

MULTI-MONTI®-plus

Europäische Technische Bewertung ETA-15/0784

Schraubanker zur Verankerung im gerissenen und ungerissenen Beton

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0784 vom 23. April 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Schraubanker in den Größen 6, 7.5, 10, 12, 16 und 20 mm zur Verankerung im gerissenen und ungerissenen Beton

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Schrauben GmbH & Co. KG Werk Schramberg

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-15/0784 vom 19. Mai 2016

Z25763.18

Europäische Technische Bewertung ETA-15/0784

Seite 2 von 14 | 23. April 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-15/0784

Seite 3 von 14 | 23. April 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Schraubanker MULTI-MONTI-plus ist ein Dübel in den Größen 6, 7,5, 10, 12, 16 und 20 mm aus galvanisch verzinktem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung				
Charakteristische Widerstände für statische und quasi-statische Beanspruchungen	Siehe Anhang C 1				
Charakteristische Widerstände für die seismische Kategorie C1 und C2	Siehe Anhang C 2				
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 4				

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 3

3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

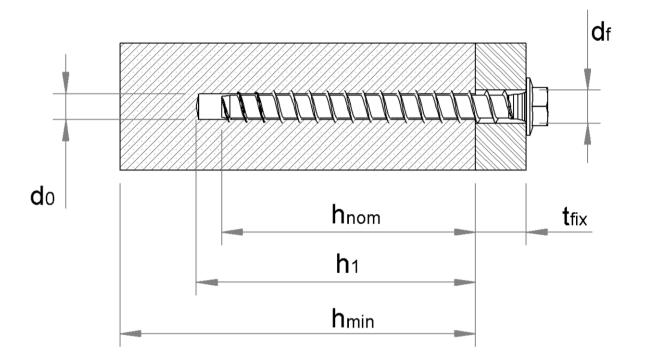
Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-15/0784

Seite 4 von 14 | 23. April 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 23. April 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Produkt im Einbauzustand

MMS-plus SS (Ausführung mit Sechskantkopf und angepresster Scheibe Größe 6, 7.5, 10, 12, 16 und 20)

d₀ = nomineller Bohrlochdurchmesser h_{nom} = nominelle Verankerungstiefe

 $\begin{array}{lll} h_1 & = & & Bohrlochtiefe \\ h_{min} & = & & Mindestbauteildicke \\ t_{fix} & = & H\"{o}he \ des \ Anbauteils \end{array}$

d_f = Durchmesser Durchgangsloch im Anbauteil

MULTI-MONTI-plus

Produktbeschreibung Produkt im Einbauzustand Anhang A 1

Tabelle A1: Material und Ausführungen

Art	Bezeichnung / Material											
	Schraubanker / Stahl 1)											
1, 2,	Größe MMS-plus			6	7,5	10	12	16	20			
3, 4, 5, 6,	Nennwert der charakteristischen Streckgrenze	f _{yk}	[N/mm²]	640	640	640	640	640	640			
7, 8, 9, 10,	Nennwert der charakteristischen Zugfestigkeit	f _{uk}	[N/mm²]	800	800	800	800	800	800			
11	Bruchdehnung	A ₅	[%]			≤	8					
	1) galvanisch verzinkter Stahl nach EN	10263	-4:2001 (mel	nrlagige E	Beschichtun	gssysteme	sind mög	lich)				
			The state of the s	1)	MULTI-MO (alternative				agescheiben Iem Kopf),			
				2)	MULTI-MO angepress Konus unt	ter Schreil	be (alterna					
	3) MULTI-MONTI-plus P, PanHead, kleiner Rundkopf											
			X O S. T.	4)	MULTI-MO großer Ru		MS, Monta	igeschiene	enanker,			
			IN SEL	5)	MULTI-MO	ONTI-plus	F, mit Sen	kkopf				
Ø,				6)	MULTI-MO Unterkopfg			•				
Ø,			201	7)	MULTI-MO Unterkopfo (alternativ	gewinde, e	ingängig c	der mehrg				
			(3)	8)	MULTI-MO Anschluss		ST, Stocka	anker mit n	netr.			
				9)					sgewinde zu montiert mit			
			0	MULTI-MONTI-plus V, Vorsteckanker mit metr. Anschlussgewinde								
	11) MULTI-MONTI-plus DWC, Rundkopf und Unterkopfgewinde, eingängig oder mehrgängig mit abweichenden Durchmessern gegenüber dem Betongewinde (andere Ausprägung möglich)											

MULTI-MONTI-plus

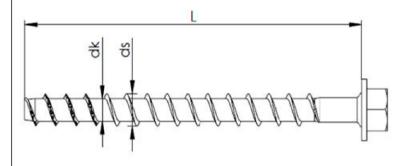
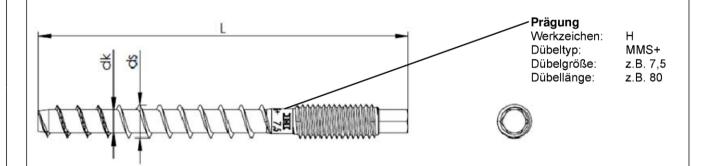

Produktbeschreibung Material und Ausführung Anhang A 2

Tabelle A2: Abmessungen und Kopfmarkierungen

Größe MMS-plus			6		7	7,5		10		12		6	20	
		h _{nom}		h _n	h_{nom}		h_{nom}		h _{nom}		om	h _{nom}		
Einschraubtiefe im Beton [mm]		35	45	35	55	50	65	75	90	100	115	140		
Außendurchmesser	ds	[mm]	6,65		7,75		10,5		12,6		16,7		21,2	
Kerndurchmesser	d_k	[mm]	4	,3	5,45		7,3		9,05		13,3		17,4	
1 ====	∧ l	[mm]	3	35		35		35 50 75		50		10	00	140
Länge	L≤	[mm]	50	00	50	00	500		600		800		800	


Prägung im Kopfbereich

Prägung
Werkzeichen: H
Dübeltyp: MMS+
Dübelgröße: z.B. 7,5
Dübellänge: z.B. 80

Prägung im Schaftbereich

MULTI-MONTI-plus Produktbeschreibung Abmessungen und Kopfmarkierungen Anhang A 3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: alle Größen.
- Seismische Einwirkung für Leistungskategorie C1:
 - MMS-plus alle Ausführungen in der Größe 10 mit maximaler Einschraubtiefe h_{nom} , Größe 12 mit den beiden Einschraubtiefen h_{nom} , Größe 16 und 20 mit maximaler Einschraubtiefe.
- Seismische Einwirkung für Leistungskategorie C2:
 - MMS-plus alle Ausführungen in der Größe 16 und 20 mit der maximalen Einschraubtiefe hnom2.
- · Brandbeanspruchung: alle Größen.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- · Gerissener oder ungerissener Beton.

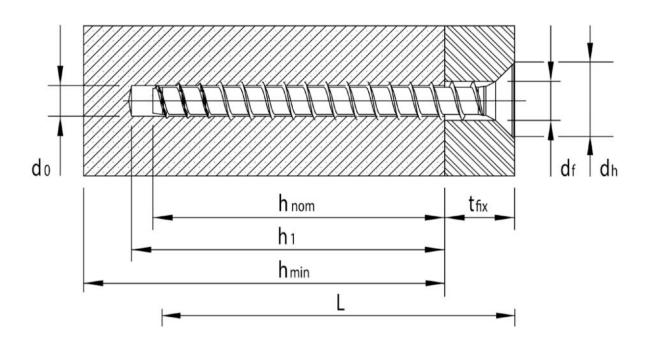
Anwendungsbedingungen (Umweltbedingungen):

· Bauteile unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerung unter statischer und quasi-statischer Beanspruchung und bei Brandbeanspruchung erfolgt nach FprEN 1992-4:2017 und EOTA Technical Report TR055.
- Die Bemessung unter Querbeanspruchung nach FprEN 1992-4:2017, Abschnitt 6.2.2 gilt für alle in Anhang B2, Tabelle B1 angegebenen Durchmesser d_f des Durchgangslochs im Anbauteil.

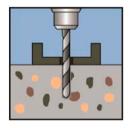
Einbau:

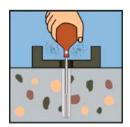

- Bohrlochherstellung nur durch Hammerbohren.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- · Leichtes Weiterdrehen des Dübels ist nicht möglich.
- Der Dübelkopf liegt am Anbauteil an und ist nicht beschädigt, bzw. die erforderliche Einschraubtiefe h_{nom} ist erreicht.

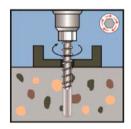
MULTI-MONTI-plus	
Verwendungszweck Spezifikationen	Anhang B 1

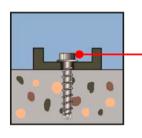
Tabelle B1: Montagekennwerte MMS-plus

Größe MMS-	plus			(6	7	,5	1	0	1	2	1	6	20	
				h _{nom}		hn	h_{nom}		om	h _{nom}		h _n	om	h _{nom}	
Einschraubtief	e im Beton		[mm]	35	45	35	55	50	65	75	90	100	115	140	
Bohrernenndu	rchmesser	d₀	[mm]	,	5	(6	8		1	0	1	4	18	
Bohrschneider	n-Ø	d _{cut} ≤	[mm]	5,	40	6,	40	8,	45	10	,45	14	,50	18,50	
Bohrlochtiefe		h₁≥	[mm]	40	50	40	65	60	75	85	100	115	130	160	
Durchgangslo	ch Anbauteil	d _f ≤	[mm]	-	7	,	9	12	2,5	14	1,5	1	9	23	
Durchmesser	Senkkopf	d _h	[mm]	11	1,5	15	5,5	19	,5	2	4		-	-	
Mindestbautei	ldicke	h _{min}	[mm]	100		10	00	100	115	125	150	18	50	180	
gerissener und ungerissener	Minimaler Achsabsta nd	S _{min}	[mm]	30		3	5	35		40		60		80	
Beton	Minimaler Randabsta nd	C _{min}	[mm]	3	0	3	30 35		5	40		60		80	
empfohlenes S	Setzgerät		[Nm]	E	lektrisc	her Tan	gential-			er, max erangab		ıngsabç	jabe T _r	_{ax} gemäß	
	[riii]		75	100	12	20	25	50	2	50	60	00	800		
Montagedrehm metrisches Ge (MMS-plus V)		T _{inst}	[Nm]		-		15		20		20 30		55	70	140


MULTI-MONTI-plus	
Verwendungszweck Montagekennwerte	Anhang B 2


Setzanweisung


Informationen der Zulassung beachten!


Bohrloch dreh-schlagend bis zur erforderlichen Bohrlochtiefe erstellen

Bohrmehl entfernen, z.B. durch ausblasen

Setzen des Schraubankers mit Tangential-Schlagschrauber oder von Hand

Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt

MULTI-MONTI-plus

Verwendungszweck Setzanweisung Anhang B 3

Tabelle C1 Charakteristische Werte für statische und quasistatische Beanspruchung MMS-plus

Größe MMS-pl	6	3	7	,5	1	0	1	2	1	6	20				
					hn	om	h,	nom	h,	nom	h,	nom	h _r	nom	h _{nom}
Einschraubtiefe ir	n Beto	n		[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	100	115	140
Stahlversagen fü	ir Zug	- und Que	rtragfäh	igkeit											
Charakteristische T	ragfähi	gkeit	$N_{Rk,s}$	[kN]	10	10,8 17,6 32,1 49,9 111,1						1,1	190,2		
Teilsicherheitsbeiwe	ert		γMs	-						1,	50				
Charakteristische T	ragfähi	gkeit	$V_{Rk,s}$	[kN]	4	4,1 6,1 13,7 24,1 50,2						85,3			
Teilsicherheitsbeiwe	ert		γMs	-	1,25										
	k ₇ -									0	,8				
Charakteristische T	ragfähi	gkeit	M ⁰ _{Rk,s}	[Nm]	6	,7	14	4,1	34	1,5	66	5,8	20	7,6	464,3
Herausziehen															
Charakteristische Tragfähigkeit in					5,5	8	4	_ 2)		2)		2)		2)	_ 2)
ungerissenem Beton C20/25		25	$N_{Rk,p}$	[kN]	5,5	0	4		_		_		_		
Charakteristische T	ragfähi	gkeit in	N ₋	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
gerissenem Beton (20/25		$N_{Rk,p}$	[KIN]	'	1,5			0	9	12	16	20	30	44
Erhöhungsfaktor für	Erhöhungsfaktor für C30/37									1,	22				
Druckfestigkeitsklas	sen	C40/50	Ψ_{c}	-		1,41									
		C50/60				1,58									
Betonausbruch	und S	palten													
Effektive Veranke	rungs	tiefe	h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Faktor für	geri	ssen	k _{cr,N}	-						7	,7				
raktor ful	unge	erissen	k _{urc,N}	-						1	1,0				
Betonausbruch	Ran	dabstand	C _{cr,N}	[mm]						1.5	h _{ef}				
Betoriausbruch	Ach	sabstand	S _{cr,N}	[mm]						3	h _{ef}				
Spalten	Ran	dabstand	C _{cr,sp}	[mm]						1.5	h _{ef}				
Oparteri	Ach	sabstand	S _{cr,sp}	[mm]						3	h _{ef}				
Teilsicherheitsbei	wert		γ_{inst}	-						1	,0				
Betonausbruch	auf de	r lastabge	wandte	n Seite											
k-Faktor k ₈ -					1,0 2,0										
Betonkantenbruch	1														
Wirksame Dübella	änge		I _f = h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Wirksamer Durch	messe	er	d_{nom}	[mm]	į	5		6	;	В	1	0	1	4	18

Nur für statisch unbestimmte Systeme

MULTI-MONTI-plus

Leistungen

Charakteristische Werte für statische und quasi-statische Zugbeanspruchung

Anhang C 1

²⁾ Herausziehen ist nicht maßgebend

Tabelle C2.1 Charakteristische Werte für die seismische Leistungskategorie C1

Größe MMS	S-plus			10	1	2	16	20		
				h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}		
Einschraubtie	efe im Beton		[mm]	65	75	90	115	140		
Stahlversage	en für Zug- und (Quertragfä	higkeit							
Observation distinct	b - T(86-1-1-9	$N_{Rk,s,eq}$	[kN]	24,1	37	7,4	100,0	142,7		
Charakteristische Tragfähigkeit V _{Rk,s,eq}			[kN]	9,6	16	3,9	45,2	91,0		
Herausziehe	n									
Charakteristisc	he Trag-	N.	ri-Ni2	0.0	0.0	10.0	24.0	22.0		
fähigkeit in gerissenem Beton		$N_{Rk,p,eq}$	[kN]	6,8	9,0	12,0	21,0	33,0		
Betonausbru	ıch									
Effektive Vera	ankerungstiefe	h _{ef}	[mm]	50	50 57 70 90					
Betonaus-	Randabstand	C _{cr,N}	[mm]			1.5 h _{ef}				
bruch	Achsabstand	S _{cr,N}	[mm]			3 h _{ef}				
Montagesiche	erheitsbeiwert	γ ₂	-			1,0				
Betonausbru	ıch auf der lasta	bgewandt	en Seite	•						
k-Faktor		k	-	1	,0		2,0			
Betonkantenb	ruch									
Wirksame Dü	bellänge	I _f = h _{ef}	[mm] 50 57 70 90							
Wirksamer D	urchmesser	d _{nom}	[mm]	8	10 14					

Tabelle C2.2 Charakteristische Werte für die seismische Leistungskategorie C2

Größe MMS	S-plus			16	20						
				h _{nom}	h _{nom}						
Einschraubtie	efe im Beton		[mm]	115	140						
Stahlversage	en für Zug- und (Quertragfä	ähigkeit								
Ob a relate rietie e	h a Tanafiihialaait	$N_{Rk,s,eq}$	[kN]	100,0	142,7						
Charakteristisc	he Tragfähigkeit	$V_{Rk,s,eq}$	[kN]	26,1	57,7						
Herausziehe	n										
Charakteristisc	he Trag-		n.a.	44.0	40.4						
fähigkeit in geri	ssenem Beton	$N_{Rk,p,eq}$	[kN]	14,0	18,1						
Betonausbru	ıch										
Effektive Vera	ankerungstiefe	h _{ef}	[mm]	90	114						
Betonaus-	Randabstand	C _{cr,N}	[mm]	1.5	h_{ef}						
bruch	Achsabstand	S _{cr,N}	[mm]	3	h _{ef}						
Montagesiche	erheitsbeiwert	γ_2	-	1	,0						
Betonausbru	ıch auf der lasta	bgewandt	en Seite	•							
k-Faktor		k	-	2	,0						
Betonkantenb	Betonkantenbruch										
Wirksame Dü	bellänge	I _f = h _{ef}	[mm]	90	114						
Wirksamer D	urchmesser	d _{nom}	[mm]	14	18						

MULTI-MONTI-plus	
Leistungen Charakteristische Werte für die seismische Einwirkung C1 und C2	Anhang C 2

Tabelle C3 Charakteristische Werte unter Brandbeanspruchung

Größe MMS-pl	us			(3	7	,5	1	0	1	2	1	6	20
				h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}
Einschraubtiefe i	m Beton		[mm]	35	45	35	55	50	65	75	90	100	115	140
Charakteristisch	und Que	rzug												
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,4	2,3	3,0	3,9	5,0	7,5	11,0
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,4	1,4	2,1	2,1	4,5	4,5	7,7
	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	1,0	1,5	1,5	3,3	3,3	5,6
Charakteristische	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2	2,6	2,6	4,5
Tragfähigkeit	R30	M ⁰ _{Rk,s,fi}	[Nm]	0	,5	1,1		2,7		5,3		16,4		36,6
	R60	M ⁰ _{Rk,s,fi}	[Nm]	0,3		0,6		1	,5	2,8		8,9		19,8
	R90	M ⁰ _{Rk,s,fi}	[Nm]	0	,2	0,4		1,1		2,0		6,4		14,2
	R120	M ⁰ _{Rk,s,fi}		0	,2	0	,3	0,9		1	,6	5,1		11,4
Randabstand														
	R30 bis R120	[mm]	2 h _{ef}											
Achsabstand														
	R30 bis R120	S _{cr,fi}	[mm]						2 (C _{cr,fi}				

MULTI-MO	ONTI-plus
----------	-----------

Leistungen

Charakteristische Werte unter Brandbeanspruchung

Anhang C 3

Tabelle C4 Verschiebungen unter Zuglast

Größe MMS-plus		6		7,5		10		12		16		20	
			h _{nom}										
Einschraubtiefe im Beton		[mm]	35	45	35	55	50	65	75	90	100	115	140
Zuglast ungerissener Beton	N	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8	16,2	20,1	29,3
Verschiebung	δ_{N0}	[mm]	0,11	0,11	0,06	0,12	0,06	0,07	0,05	0,19	0,09	0,09	0,09
	$\delta_{N^{\infty}}$	[mm]	0,30	0,28	0,38	1,03	0,75	0,72	0,74	0,60	0,13	0,13	0,13
Zuglast gerissener Beton	N	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4	20,0	30,0	20,95
Verschiebung	δ_{N0}	[mm]	0,01	0,02	0,03	0,04	0,03	0,09	0,05	0,02	0,09	0,09	0,09
	δ _{N∞}	[mm]	0,14	0,09	0,12	0,11	0,08	0,09	0,07	0,22	1,38	1,38	0,69

Tabelle C5 Verschiebungen unter Querlast

Größe MMS-plus		6		7,5		10		12		16		20	
			h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}
Einschraubtiefe im Beton		[mm]	35	45	35	55	50	65	75	90	100	115	140
Querlast ungerissener und gerissener Beton	V	[kN]	2,0		4,0		8,0		12,0		22,6		42,8
Varachichung	$\delta_{\vee 0}$	[mm]	0,14	0,13	0,09	0,11	0,18	0,13	0,	18	2	9	3,4
Verschiebung	δ _{∨∞}	[mm]	0,20	0,19	0,13	0,16	0,27	0,20	0,	27	4	4	5,1

MULTI-MONTI-plus	
Leistungen Verschiebungen	Anhang C 4

HECO-Schrauben GmbH & Co.KG

Dr.-Kurt-Steim-Straße 28 · D-78713 Schramberg
Tel.: +49 (0) 74 22 / 989-0 · Fax: +49 (0) 74 22 / 989-200
Mail: info@heco-schrauben.de · www.heco-schrauben.de