

Leistungserklärung 2323-CPR-0050

1. Eindeutiger Kenncode des Produkttyps: Mungo MQL Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk

2. Hersteller: Mungo Befestigungstechnik AG, Bornfeldstrasse 2, CH-4600 Olten/Schweiz

3. AVCP System/s: System 2+

4. Verwendungszweck/e:

Produkt	Vorgesehener Verwendungszweck
Kunststoffdübel zur	Zur Verwendung in Systemen, wie z.B. Fassadensystemen, zur Befestigung
Verankerung im Beton und	oder Verankerung von Elementen, die zur Stabilität der Systeme Beitragen
Mauerwerk	

5. Europäische Bewertungsdokument: ETAG 020 Teil 1: "Kunststoffdüble als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk", Fassung März 2012, verwendet als EAD

Europäische Technische Bewertung: ETA-11/0008 vom 14. Januar 2020 **Technische Bewertungsstelle:** DIBt – Deutsches Institut für Bautechnik **Notifizierte Stellen:** 305/2011 (Construction Product Regulation)

6. Erklärte Leistungen:

Mechanische Festigkeit und Standsicherheit (BWR 1)

Die wesentlichen Merkmale bezüglich mechanischer Festigkeit und Standsicherheit sind unter der Grundanforderung Sicherheit bei der Nutzung erfasst.

Safety in case of fire (BWR 2)

· · · · · · · · · · · · · · · · · · ·	
Wesentliches Merkmal	Leistung
Charakteristische Werte für Zug- und	Siehe Anhang, insbesondere Anhang C1 bis C4
Querbeanspruchung	
Charakteristische Biegenmoment	Siehe Anhang, insbesondere Anhang C1
Verschiebung unter Zug- und Querbeanspruchung	Siehe Anhang, insbesondere Anhang C1
Dübelabstände und Bauteilabmessungen	Siehe Anhang, insbesondere Anhang B2 bis B3

Brandschutz (BWR 3)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang, insbesondere Anhang C1

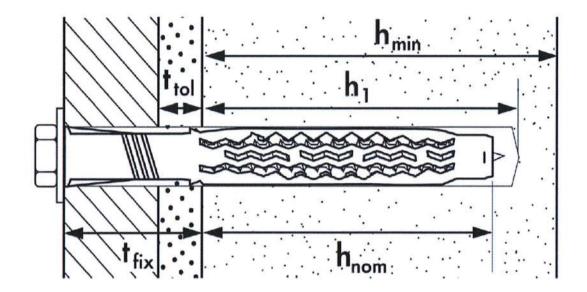
Die Leistungen des oben spezifizierten Produktes sind in Einklang mit den deklarierten Leistungen. Diese Leistungserklärung ist ausgestellt in Übereinstimmung mit der Regulierung (EU) Nr. 305/2011 und unter alleiniger Verantwortung des oben identifizierten Herstellers.

Unterschrieben für den Hersteller und im Namen des Hersteller von:

Robert Klemencic Dipl.-Ing.

Leiter Technik

Olten, 20.02.2020


Diese Leistungserklärung (DoP) wurde in verschiedenen Sprachen verfasst. Im Falle von Unklarheiten bei der Interpretation der Leistungserklärung hat jeweils die englische Version Vorrang. Der Anhang enthält freiwillige und ergänzende Informationen in Englisch, welche über die gesetzlichen Anforderungen hinausgehen.

Aungo Bornfeldstrasse 2 Phone +41 62 206 75 75

Befestigungstechnik AG CH-4600 Olten · Switzerland Fax +41 62 206 75 85 mungo@mungo.swiss

Einbauzustand für MQL 10

Legende

h₁

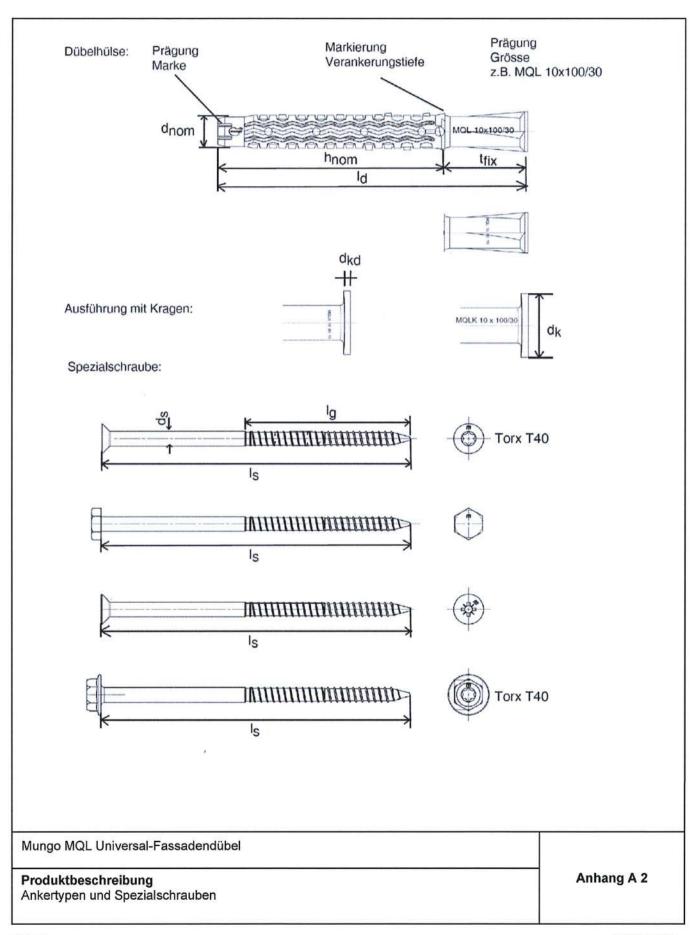
h_{min} = Mindestbauteildicke

= Tiefe des Bohrlochs bis zum tiefsten Punkt

t_{tol} = Dicke des Toleranzausgleiches oder der nichttragenden Schicht

t_{fix} = Befestigungsdicke (Anbauteildicke und Dicke nichttragender Schicht)

h_{nom} = Gesamtlänge des Dübels im Verankerungsgrund


Mungo MQL Universal-Fassadendübel

Produktbeschreibung

Einbauzustand

Anhang A 1

Tabelle A1: Abmessungen

Dübeltyp	Dübelhülse						Spez	ialschra	ube ²⁾	
	h _{nom} [mm]	d _{nom} [mm]	t _{fix,min} [mm]	t _{fix,max} [mm]	l _d [mm]	d _{kd} [mm]	d _k [mm]	d _s [mm]	l _G [mm]	I _{S,min} [mm]
MQL 10 ¹⁾	70	10	10	330	80 - 400	2	18	7	77	85

Bei der Bezeichnung der Dübel ist zusätzlich die Länge der Dübelhülse I_d anzugeben, z.B. bei I_d = 140 mm: Dübel MQL 10/ 140

Tabelle A2: Werkstoffe

Benennung	Material		
Dübelhülse	Polyamid, PA6 Farbe: orange	2/2	
	Stahl 6.8, galvanisch verzinkt ≥ 5µm nach EN ISO 4042:2018 blau passiviert		
Spezialschraube	nichtrostender Stahl A4 nach EN 10088-3:2014 Werkstoffnummern: 1.4401, 1.4301, 1.4571		

Mungo MQL Universal-Fassadendübel	
Produktbeschreibung	Anhang A 3
Abmessungen und Werkstoffe	

 $^{^{2)}\,\,}$ Die Schraubenlänge I_s beträgt 5 mm mehr als die Länge I_d der Dübelhülse, so dass die Schraube die zugehörige Dübelhülse durchdringt.

Spezifizierungen des Verwendungszwecks

Beanspruchung der Verankerung:

- · statische oder quasi-statische Belastung
- · Mehrfachbefestigung von nichttragenden Systemen

Tabelle B1: Anwendungskategorien in Bezug auf Verankerungsgrund und Temperaturbereich

Anwer	Anwendungskategorien		Dübeltyp		
	NS2 (2-4)	Anhang	MQL 10		
Verankerungsgrund					
а	Bewehrter oder unbewehrter Normalbeton ³⁾ mit einer Festigkeits- klasse ≥ C12/15 gemäß EN 206-1:2000/A1:2004/A2:2005	C 1	~		
b	Mauerwerk aus Vollsteinen 1)2)3)	C 2	✓		
С	Mauerwerk aus Lochsteinen 2)3)	C 3 + C 4	V		
d	Porenbeton	-	×=:		
Tempe	eraturbereich				
Tb	min T = -20°C bis +80°C (maximale Kurzzeittemperatur +80°C und maximale Langzeittemperatur +50°C)		✓		

Die charakteristische Tragfähigkeit des Dübels kann auch für Vollstein-Mauerwerk mit größeren Abmessungen und größeren Druckfestigkeiten angewendet werden.

²⁾ Ziegelsteine und Kalksandsteine mit Festigkeitsklasse des Mauermörtels mindestens M2,5 gemäß EN 998-2:2010.

Bei anderen Steinen der Nutzungskategorien a, b oder c darf die charakteristische Tragfähigkeit der Dübel dann durch Baustellenversuche nach ETAG 020, Anhang B, Fassung März 2012, ermittelt werden.

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl)
- Die Spezialschraube aus galvanisch verzinktem Stahl darf auch im Freien verwendet werden, wenn nach sorgfältigem Einbau der Befestigungseinheit der Bereich des Schraubenkopfes gegen Feuchtigkeit und Schlagregen so geschützt wird, dass ein Eindringen von Feuchtigkeit in den Dübelschaft nicht möglich ist. Dafür ist vor dem Schraubenkopf eine Fassadenbekleidung oder eine vorgehängte hinterlüftete Fassade zu befestigen und der Schraubenkopf selbst mit einer weichplastischen dauerelastischen Bitumen-Öl-Kombinationsbeschichtung (z. B. Kfz-Unterboden- bzw. Hohlraumschutz) zu versehen.
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl).
 - Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 020, Anhang C, Fassung März 2012 unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Position der Dübel ist in den Konstruktionszeichnungen anzugeben.
- Die Befestigungen sind nur als Mehrfachbefestigung für nichttragende Systeme nach ETAG 020, Fassung März 2012 zu verwenden.

Einbau:

- Beachtung des Bohrverfahrens nach Anhängen C 1 bis C 4.
- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Temperatur beim Setzen des Dübels: -20°C bis +50°C
- UV-Belastung durch Sonneneinstrahlung des ungeschützten, d. h. unverputzten Dübels ≤ 6 Wochen.

Mungo MQL Universal-Fassadendübel	
Verwendungszweck	Anhang B 1
Spezifikationen	

Tabelle B2: Montagekennwerte

Dübeltyp	MQL 10		
Untergrund			Beton Vollstein-Mauerwerk Lochstein-Mauerwerk
Gesamtlänge des Dübels im Verankerungsgrund 1)2)	h _{nom}	[mm]	≥ 70
Nom. Bohrlochdurchmesser	d _{nom}	[mm]	10
Schneidendurchmesser des Bohrers	d _{cut}	[mm]	≤ 10,45
Tiefe des Bohrlochs bis zum tiefsten Punkt ¹⁾	h ₁	[mm]	80
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	10,5

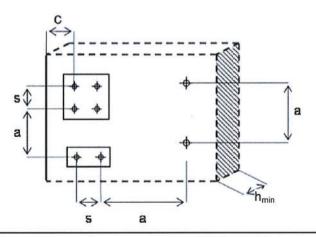

¹⁾ siehe Anhang A 1

Tabelle B3: Minimale Bauteildicke, Randabstand und Achsabstand in Beton

Dübel- typ	Festigkeits- klasse	Mindest- bauteildicke	Charakteris- tischer Randabstand	Charakteris- tischer Achsabstand	Minimaler Randabstand	Minimaler Achsab- stand
		h _{min}	C _{cr,N}	S _{cr,N}	C _{min}	S _{min}
		[mm]	[mm]	[mm]	[mm]	[mm]
MQL 10	C12/15	100	140	140	70	140
	≥C16/20	100	100	100	50	100

Befestigungspunkte mit einem Achsabstand a $\leq s_{cr,N}$ werden als Gruppe mit einer maximalen charakteristischen Tragfähigkeit $N_{Rk,p}$ nach Tabelle C3 betrachtet. Für einen Abstand a $> s_{cr,N}$ werden die Dübel immer als Einzeldübel betrachtet, von denen jeder eine charakteristische Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle C3 hat.

Anordnung der Dübel im Beton

Mungo MQL Universal-Fassadendübel

Verwendungszweck

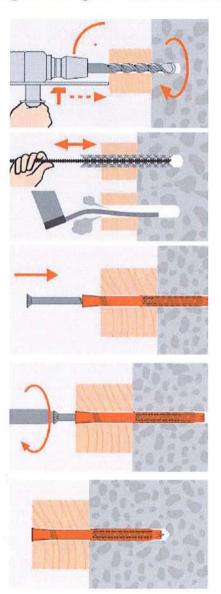
Montagekennwerte, Rand- und Achsabstand in Beton

Anhang B 2


²⁾ In Mauerwerk aus Hohlblöcken oder Lochsteinen muss der Einfluss von h_{nom} > 70 mm durch Baustellenversuche nach ETAG 020, Anhang B, erfasst werden

Tabelle B4: Minimale Bauteildicke, Randabstand und Achsabstand in Mauerwerk

Vorenkominge			Minimaler	Minimaler Achsabstand		
Verankerungs- grund			Zwischenabstand	vertikal zum Rand	parallel zum Rand	
		h _{min}	C _{min}	a _{min}	S _{1,min}	S _{2,min}
		[mm]	[mm]	[mm]	[mm]	[mm]
Vollziegel Mz 20/2,0 - 2DF	C 2	115				
Kalksandvollstein KS 12/2,0 - 2DF	C 2	115				
Hochlochziegel HLz 12/1,2 - 10DF	C 3	240	100	max (250 mm, s _{1,min} , s _{2,min})	200	400
Ital. Lochziegel Mattone	C 3	240				
Kalksandlochstein KSL 12/1,2-10DF	C 4	240				


Anordnung der Dübel im Mauerwerk

Mungo MQL Universal-Fassadendübel	
Verwendungszweck	Anhang B 3
Rand- und Achsabstand in Mauerwerk	1997

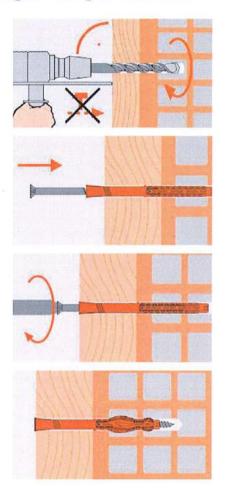
Montageanleitung für Beton und Vollstein:

Bohrlocherstellung im **Hammerbohrverfahren**. Bohrlochdurchmesser und Bohrlochtiefe aus Tabelle B2 entnehmen. Untergrundtemperatur ≥ -20°C.

Bohrloch mit Bürste vorreinigen, danach mit Pumpe ausblasen.

Fassadendübel mit vormontierter Schraube durch zu befestigendes Bauteil einsetzen.

Fassadendübel bis Bund auf Bauteil stecken, dann Bauteil mit Schraube befestigen.


Schraube anziehen bis Kopfauflage.

Mungo MQL Universal-Fassadendübel

Verwendungszweck Montageanleitung für Beton und Vollstein Anhang B 4

Montageanleitung für Lochstein:

Bohrlocherstellung entsprechend Tabelle C6 und C7 im **Drehbohrverfahren** (Bohren ohne Hammerschlag) **bzw. Hammerbohrverfahren**.

Bohrlochdurchmesser und Bohrlochtiefe aus Tabelle B2 entnehmen.

Untergrundtemperatur ≥ -20°C.

Fassadendübel mit vormontierter Schraube durch zu befestigendes Bauteil einsetzen.

Fassadendübel bis Bund auf Bauteil stecken, dann Bauteil mit Schraube befestigen.

Schraube anziehen bis Kopfauflage.

Mungo MQL Universal-Fassadendübel

Verwendungszweck Montageanleitung für Lochstein Anhang B 5

Tabelle C1: Charakteristisches Biegemoment der Spezialschraube

Dübeltyp		MQL 10		. 10
Stahlart			galvanisch verzinkter Stahl	nichtrostender Stahl
Charakteristisches Biegemoment	M _{Rk,s}	[Nm]	15,3	17,8
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	1,25	1,56

¹⁾ Wenn keine nationalen Regelungen vorliegen.

Tabelle C2: Charakteristische Tragfähigkeit der Schraube

Dübeltyp		MQL 10		
Versagen des Spreizelements (Spezialschraube)			galvanisch verzinkter Stahl	nichtrostender Stahl
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	17,0	19,8
Teilsicherheitsbeiwert für N _{Rk,s}	γ _{Ms} 1)	[-]	1,5	1,87
Charakteristische Quertragfähigkeit	V _{Rk,s}	[kN]	8,5	8,5
Teilsicherheitsbeiwert für V _{Rk,s}	γ _{Ms} 1)	[-]	1,25	1,56

¹⁾ Wenn keine nationalen Regelungen vorliegen.

Tabelle C3: Charakteristische Tragfähigkeit in Beton (Nutzungskategorie a)

Dübeltyp			MQL 10
Bohrverfahren			Hammerbohren
Versagen durch Herausziehen (Kunststoffhülse)			
Beton C12/15			
Charakteristische Tragfähigkeit 50°C ¹⁾ / 80°C ²⁾	N _{Rk.p}	[kN]	1,5
Beton ≥ C16/20			- N/V
Charakteristische Tragfähigkeit 50°C ¹⁾ / 80°C ²⁾	$N_{Rk,p}$	[kN]	2,5

¹⁾ Maximale Langzeittemperatur

Tabelle C4: Verschiebung¹⁾ unter Zug- und Querlast in Beton und Mauerwerk

		Zuglast			Querlast	
Dübeltyp	F 2)	δ _{N0}	δ _{N∞}	F 2)	δνο	δ _{V∞}
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
MQL 10	1.0	0.06	0.12	4.5	3.0 ³⁾	4.5 3)

¹⁾ Gültig für alle Temperaturbereiche

Tabelle C5: Werte unter Brandbeanspruchung in Beton C20/25 bis C50/60 in jede Lastrichtung, ohne dauernde zentrische Zuglast und ohne Hebelarm

Dübeltyp	Feuerwiderstandsklasse	F ¹⁾
MQL 10	R 90	≤ 0,8 kN

¹⁾ $F = F_{Rk} / (\gamma_M \cdot \gamma_F)$

Mungo MQL Universal-Fassadendübel	
Leistungen Charakteristische Tragfähigkeit in Beton, charakteristische Tragfähigkeit der Schraube Verschiebung unter Zug- und Querlast in Beton und Mauerwerk	Anhang C 1

²⁾ Maximale Kurzzeittemperatur

²⁾ Zwischenwerte dürfen linear interpoliert werden.

³⁾ Die Verschiebungen unter Querlast können sich bei Vorliegen eines Ringspaltes im Anbauteil vergrößern.

Tabelle C5: Charakteristische Tragfähigkeit für MQL 10 in Vollbausteinen (Nutzungskategorie b) – Ziegelstein und Kalksandstein

Verankerungs- grund	Steinabmessungen (Format: Länge/ Breite/ Höhe) [cm]	Mindest- druckfestig- keit f₀ [N/mm²] Rohdichte ≥ ρ [kg/dm³]	Bohrver- fahren ¹⁾	Charakteristische Tragfähigkeit F _{Rk} [kN] MQL 10
Vollziegelstein 2DF	240mm/115mm/113mm nach EN 771-1:2011 / DIN 105			
Mz 20/2,0	2100	10 / 2,0	н	2,0
WE 20/2,0	(i.s.m	20 / 2,0	Н	3,0
Kalksandvollstein 2	2DF 240mm/115mm/113mm nach EN 771-2 :2011 / DIN	V 106:2005-10		
KSV 12/2,0	11,5	10 / 2,0	Н	1,5
NSV 12/2,0	11,2	20 / 2,0	Н	2,5

1) H = Hammerbohren; R = Drehbohren

Mungo MQL Universal-Fassadendübel	
Leistungen Charakteristische Tragfähigkeiten in Vollbaustoffen	Anhang C 2

Verankerungs- grund	Steinabmessungen (Format: Länge/ Breite/ Höhe) [cm]	Mindest- druckfestig- keit f _b [N/mm²] Rohdichte	Bohrver- fahren ¹⁾	Charakteristisch Tragfähigkeit F _{Rk} [kN]
Mauerziegel 10DF 300	0mm/ 240mm/ 240mm und 300mm/ 240mm/ 195 m	≥ p [kg/dm³]	ш-	MQL 10
	771-1:2011 / DIN 105-100:2012-01			
HLz 12/1,2	24	12 / 1,2	R	1,2 ²⁾
	2 12 12 135 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 / 1,2	R	2,0 ²⁾
Ital. Lochziegel Mattone		10 / 0,84	R	0,9 ²⁾
¹⁾ H = Hammerbohren; I ²⁾ Nur Querbelastung oh	R = Drehbohren nne Hebelarm erlaubt.			
go MQL Universal-Fa	ssadendijhel		Т	

Tabelle C7: Charakteristische Tragfähigkeit für MQL 10 in Hohl- bzw. Lochbaustoffen (Nutzungskategorie c) –Kalksandstein

Verankerungs- grund	Steinabmessungen (Format: Länge/ Breite/ Höhe) [cm]	Mindest- druckfestig- keit f _b [N/mm²] Rohdichte	Bohrver- fahren ¹⁾	Charakteristische Tragfähigkeit F _{Rk} [kN]
		≥ p [kg/dm³]		MQL 10
Kaiksandstein 300mm	n/ 240mm/ 115mm mit Lochung nach EN 771-2:201	1 / DIN V 106:20	05-10	
KSL 12/1,4	11,5	8 / 1,4	Н	1,2 ²⁾
	30 27 7 10 15 28 15 28 28 23 24	12 / 1,4	Н	2,0 ²⁾

¹⁾ H = Hammerbohren; R = Drehbohren;

Mungo MQL Universal-Fassadendübel	
Leistungen	Anhang C 4
Charakteristische Tragfähigkeiten in Hohlbaustoffen	

²⁾ Nur Querbelastung ohne Hebelarm erlaubt.