

Declaration of Performance

2323-CPR-0053

1. Unique identification code of the product-type: Torque-controlled expansion anchor m2r made of stainless steel for use in non-cracked concrete

2. Manufacturer: Mungo Befestigungstechnik AG, Bornfeldstrasse 2, CH-4600 Olten/Switzerland

3. System/s of AVCP: System 1

4. Intended use or use/es:

Product	Intended use
Metal anchor for use in non-cracked	The anchor is to be used for static or quasi-static loading in reinforced
concrete	or unreinforced normal weight concrete of strength classes C20/25 to
	C50/60 according to EN 206:2013

5. European Assessment Document: ETAG 001 Part 2, April 2013 used as EAD European Technical Assessment: ETA-05/0199 of 15 February 2016 Technical Assessment Body: DIBt – Deutsches Institut für Bautechnik Notified body/ies: No 305/2011 (Construction Product Regulation)

6. Declared performance:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads,	See appendix, especially Annex C1 to C2
Displacements	

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Singed for and on behalf of the manufacturer by:

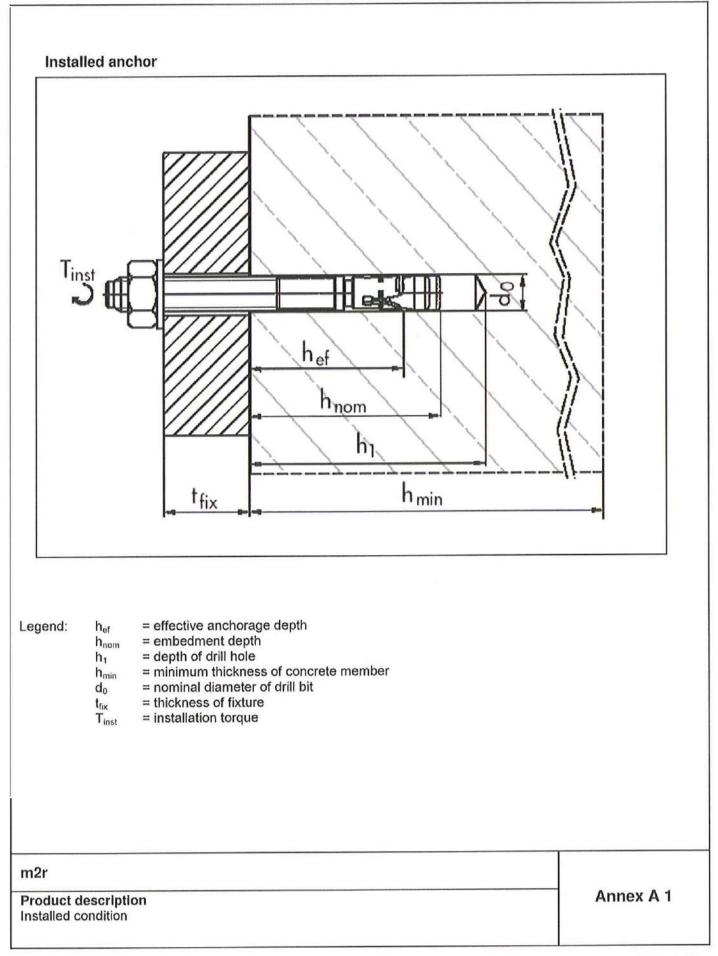
Robert Klemencic Dipl.-Ing. Head of Engineering

Olten, 2019-11-08

This DoP Has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language as neutrally specified) legal requirements.

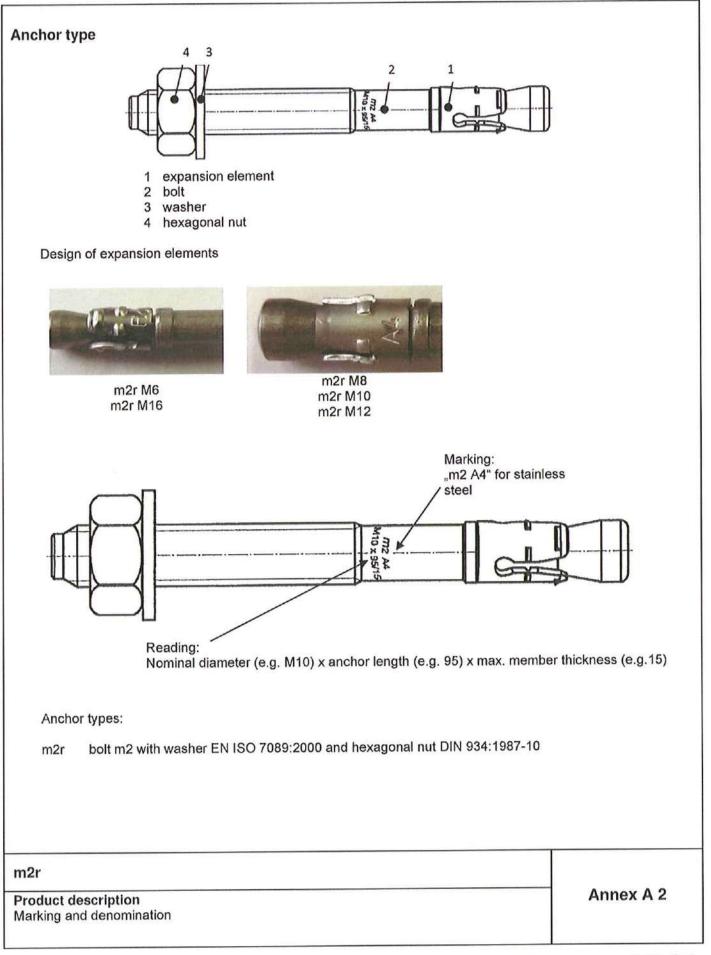
Mungo Befestigungstechnik AG Bornfeldstrasse 2 CH-4600 Olten · Switzerland Phone +41 62 206 75 75 Fax +41 62 206 75 85


mungo@mungo.swiss

www.mungo.swiss

Page 5 of European Technical Assessment ETA-05/0199 of 15 February 2016

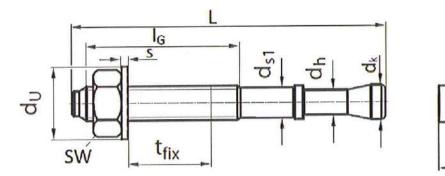
English translation prepared by DIBt



8.06.01-481/15

Page 6 of European Technical Assessment ETA-05/0199 of 15 February 2016

English translation prepared by DIBt



8.06.01-481/15

S

Part	Part Designation					M6	M8	M10	M12	M16
			d	k	[mm]	6	8	10	12	16
	Bolt min		d	h	[mm]	4	5,6	7,2	8,5	11,5
1			ds	1	[mm]	5,25	7,05	8,9	10,7	14,5
			min	IG	[mm]	32	43	52	62	73
			max	< l _G	[mm]	62	120	120	120	120
			mir	۱L	[mm]	65	80	95	110	130
			ma	хL	[mm]	95	165	180	185	180
2	Expansion	element - le			[mm]	9,5	13,2	15,2	17,5	19,3
		Washer EN ISO 7089:2000		du	[mm]	12	16	20	24	30
3	Washer			S	[mm]	1,6	1,6	2	2,5	3
4	Hexagonal	nut			[mm]	10	13	17	19	24

Table A2: Materials

Part	Designation	Material
1	Bolt	Stainless steel according to EN 10088
2	Expansion element	Stainless steel according to EN 10088
3	Washer	Stainless steel according to EN 10088
4	Hexagonal nut	Stainless steel A4 ISO3506, EN 10088

m2r

Product description Dimensions and materials Annex A 3

Page 8 of European Technical Assessment ETA-05/0199 of 15 February 2016

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- Non-cracked concrete

Use conditions:

- Structures subject to dry internal conditions
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with ETAG 001, Annex C, design method A, Edition August 2010
- It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- · Hole drilling by hammer drilling only
- Anchor installation in accordance with the manufacturer's specifications using the appropriate tools carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor
- Check concrete strength before placing the anchor to ensure that the strength class of the concrete is covered by the product's assessment
- · Positioning the drill holes without damaging the reinforcement
- · Cleaning the holes
- · Edge distances and spacing not less than the specified values without minus tolerances
- Anchor installation such that the effective embedment depth is complied with. This compliance is ensured
 if the anchor's embedment mark doesn't exceed the concrete surface.
- · The anchor may only be set once.
- In case of aborted holes: new drilling at a minimum distance away of twice the depth of the aborted hole
 or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique
 tension load it isn't in the direction of load application.
- Using a calibrated torque wrench for installation.

m2r	
Intended use	Annex B 1
Specifications	

Minimum fixture thickness

Maximum fixture thickness

1

65

Anchor size		M6	M8	M10	M12	M16	
Nominal drill hole diameter	do	[mm]	6	8	10	12	16
Effective anchorage depth	h _{ef}	[mm]	40	50	58	68	80
Installation torque	Tinst	[Nm]	6,5	15	30	50	140
Cutting diameter at the upper tolerance limit (maximum diameter bit)	d _{cut} ≤	[mm]	6,4	8,45	10,45	12,5	16,5
Depth of drill hole	h₁ ≥	[mm]	60	65	80	90	110
Diameter of clearance hole in fixture	d _f ≤	[mm]	7	9	12	14	18

1

10

1

45

1

100

1

90

Table B1:

Minimum thickness of concrete member, minimum spacing and edge Table B2: distances

[mm]

[mm]

Size			M6	M8	M10	M12	M16
Minimum thickness of concrete member	h _{min}	[mm]	100	100	120	140	160
Minimum spacing	Smin	[mm]	40	45	55	75	100
for edge distance	С	[mm]	70	45	55	75	190
Minimum edge distance	Cmin	[mm]	40	-	-	-	130
for spacing	S	[mm]	80	-	-	-	190

t_{fix,min}

t_{fix,max}

Intended use Installation parameters Minimum thickness of concrete member, minimum spacing and edge distances Annex B 2

Installation instructions	
	Drilling the hole
TUTA	Cleaning the hole
	Fixing plug and building material
	Tightening with torque wrench and predetermined value of T _{inst} (see Table B2)
	Tightened fixation
m2r	

Intended use Installation instructions Annex B 3

Table C1: Design method A, characteristic values under tension load

Anchor size			M6	M8	M10	M12	M16		
Installation safety factor	γ2	[-]			1,0				
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	10	19	33	46	82		
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,6				
Pull-out failure						Na			
Characteristic resistance	N _{Rk,p}	[kN]	7,5	12,0	16,0	25,0	30,0		
		C30/37	1,17						
Increasing factor for NRk,p	Ψc	C40/50	1,32						
		C50/60	1,42						
Concrete cone failure	_								
Effective anchorage depth	hef	[mm]	40	50	58	68	80		
Spacing	S _{cr,N}	[mm]			3 h _{ef}				
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}						
Concrete splitting failure		Actual and a second difference with a							
Spacing	S _{cr,sp}	[mm]	6 h _{ef}		51	h _{ef}			
Edge distance	C _{cr,sp}	[mm]		3 hef		2,5 h _{ef}			

¹⁾ In absence of other national regulations.

Table C2: Displacements under tension load

Anchor size			M6	M8	M10	M12	M16
Tension load	N	[kN]	3,6	5,7	7,6	9,9	11,9
Displacement	δ _{ND}	[mm]	0,3				
	δ _{N∞}	[mm]	1,3				

Performances Design method A, characteristic values under tension load

Displacements under tension load

Annex C 1

m2r

Table C3: Design method A, characteristic values under shear load

Anchor size			M6	M8	M10	M12	M16
Steel failure without lever	arm						
Characteristic resistance	V _{Rk,s}	[kN]	7	13	21	30	56
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,33		
Steel failure with lever arn	า						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	266
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,33				
Concrete pryout failure							
Factor in equation (5.6) of ETAG Annex C 5.2.3.3	k	[-]	1	,0	2,0		
Concrete edge failure							
Effective anchor length under shear load	l,	[mm]	40	50	58	68	80
external anchor diameter	d _{nom}	[mm]	6	8	10	12	16

¹⁾ In absence of other national regulations.

Table C4: Displacements under shear load

Anchor size			M6	M8	M10	M12	M16
Shear load		[kN]	3,9	7,1	11,2	16,3	30,3
Displacement	δ _{vo}	[mm]	1,5	1,9	2,3	3,1	3,9
	δνω	[mm]	2,3	2,9	3,5	4,7	5,9

m2r

Performances Design method A, characteristic values under shear load Displacements under shear load Annex C 2