

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-18/0236 of 2018/04/03

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

MEA Drop-in anchor

Product family to which the above construction product belongs:

Mechanical fasteners for use in non-cracked concrete

Manufacturer:

Mungo Befestigungstechnik AG Bornfeldstrasse 2 CH-4603 Olten Telephone +41 62 206 75 75 Telefax +41 62 206 75 85 Internet www.mungo.swiss

Manufacturing plant:

Mungo Befestigungstechnik AG Manufacturing Plant 1-6

This European Technical Assessment contains:

15 pages including 8 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 330232-00-0601; Mechanical fasteners for use in concrete

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

Mungo anchor type MEA is a drop-in deformation-controlled expansion anchor made of galvanized steel. The anchor is installed in a drilled hole and anchored by deformation-controlled expansion.

An illustration of the product is given in Annex A.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex B, Table B1. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C2.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C3

Hygiene, health and the environment (BWR3):

Regarding the dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 has been made in accordance with EAD 330232-00-0601; Mechanical fasteners for use in concrete.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2018-04-03 by

Thomas Bruun

Managing Director, ETA-Dan

Managing Director, ETA-Danmark

Figure A1 MEA Drop-in anchor **Anchor Sleeve** di **Anchor Plug** d_{ci} Annex A1 MEA DROP-IN ANCHOR of European Technical Assessment Product description ETA-18/0236 Characteristics of the product

Table A1. Dimensions of the anchor

Diameter inside	Length	Length of spread	Diameter outside	Length of cone	Diameter cone outside	Diameter cone inside	square
$\mathbf{d_i}$	L	$\mathbf{L_{s}}$	$\mathbf{d}_{\mathbf{o}}$	$\mathbf{L}_{\mathbf{c}}$	$\mathbf{d}_{\mathbf{co}}$	\mathbf{d}_{ci}	$\mathbf{s}_{\mathbf{c}}$
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]
Me	24.90	11.60	7.94	10.00	5.05	3.95	5.00
M6	± 0.30	± 0.60	± 0.07	± 0.20	± 0.05	± 0.05	± 0.50
MO	29.90	13.60	9.94	11.90	6.25	4.50	6.00
M8	± 0.30	± 0.60	± 0.07	± 0.30	± 0.25	± 0.25	± 2.00
M10	39.60	18.35	11.94	15.70	7.85	6.30	6.00
MIIU	± 0.40	± 0.75	± 0.07	± 0.30	± 0.25	± 0.30	± 2.00
M12	50.50	22.75	14.94	20.70	10.05	8.50	4.00
M12	± 0.50	± 0.75	± 0.07	± 0.30	± 0.25	± 0.30	± 2.00
M16	65.00	29.35	19.80	28.10	13.85	11.70	3.50
M16	± 0.50	± 0.75	± 0.20	± 0.30	± 0.25	± 0.30	± 2.00

Diameter inside	Length	Length of spread	Diameter outside	Length of cone	Diameter cone outside	Diameter cone inside	square
$\mathbf{d_i}$	L	$\mathbf{L}_{\mathbf{s}}$	$\mathbf{d}_{\mathbf{o}}$	$\mathbf{L}_{\mathbf{c}}$	$\mathbf{d}_{\mathbf{co}}$	$\mathbf{d}_{\mathbf{c}\mathbf{i}}$	$\mathbf{s_c}$
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]
M8x40	39.60	14.70	9.94	11.90	6.25	4.50	6.00
1010040	± 0.40	± 0.60	± 0.07	± 0.30	± 0.25	± 0.30	± 2.00
M10-20	29.60	15.00	11.94	13.60	7.85	6.70	3.50
M10x30	± 0.40	± 0.60	± 0.07	± 0.20	± 0.05	± 0.05	± 0.50

Table A2. Materials

Member	Material
Sleeve	Coldformed steel grade C8C in accordance with table 2 in EN 10263-2 or coldformed steel grade 1008 in accordance with table 3 in ASTM A510 . Galvanized
Plug	Coldformed steel grade C8C in accordance with table 2 in EN 10263-2 or coldformed steel grade 1008 in accordance with table 3 in ASTM A510. Galvanized

MEA DROP-IN ANCHOR	Annex A2
Product description Materials	of European Technical Assessment ETA-18/0236

Figure A2 - Hand setting tool

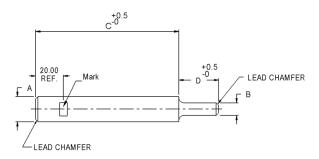


Table A3 Dimensions of hand setting tool

Size	A [mm]	B (REF) [mm]	C [mm]	D [mm]
M6	Ø 10.0	Ø 4.7	114.5	15.0
M8	Ø 10.0	Ø 6.35	94.5	17.9
M10	Ø 13.0	Ø 7.9	100.5	23.8
M12	Ø 16.0	Ø 9.8	107.5	29.7
M16	Ø 22.0	Ø 13.5	114.5	36.8

Size	A [mm]	B (REF) [mm]	C [mm]	D [mm]
M8x40	Ø 10.0	Ø 6.35	84.7	27.7
M10x30	Ø 13.0	Ø 7.9	108.3	16.0

Figure A3 - Mechanical setting tool

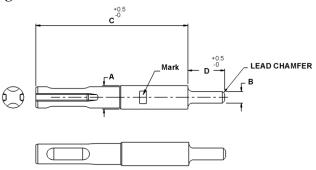


Table A4 – Dimensions of mechanical setting tool

Size	A [mm]	B (REF) [mm]	C [mm]	D [mm]
M6	Ø 10.0	Ø 4.7	114.5	15.0
M8	Ø 10.0	Ø 6.35	94.5	17.9
M10	Ø 13.0	Ø 7.9	100.5	23.8
M12	Ø 16.0	Ø 9.8	107.5	29.7
M16	Ø 22.0	Ø 13.5	114.5	36.8

Size	A [mm]	B (REF) [mm]	C [mm]	D [mm]
M8x40	Ø 10.0	Ø 6.35	84.7	27.7
M10x30	Ø 13.0	Ø 7.9	108.3	16.0

MEA DROP-IN ANCHOR	Annex A3 of European
Product description Materials	Technical Assessment ETA-18/0236

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes M6, M8, M10, M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non-cracked concrete: sizes M6, M8, M10, M12 and M16.

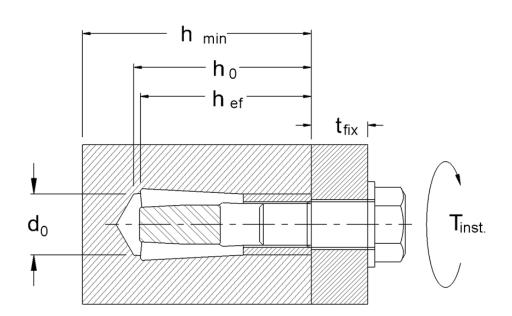
Temperature range:

The anchors may be used in the following temperature range:

- Normal internal temperature ranges

Use conditions (Environmental conditions):

- The anchors may be used in structures subject to dry internal conditions only.


Installation:

- The anchors may be installed in:
- Dry concrete: sizes M6, M8, M10, M12 and M16.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Check before placing the anchor to ensure that the strength class of the concrete, in which the anchor is to be placed, is identical with the values which the characteristic loads apply.
- Check of concrete being well compacted, e.g. without significant voids.
- Edge distances and spacings not less than the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of load application.
- Hole shall be clear.
- Anchor installation such that the effective anchorage depth is complied with; the compliance is ensured if the thickness of the fixture is not larger than the maximum values given in Annex B2.
- Anchor expansion by impact on the wedge of the anchor; the anchor is properly set if the wedge is fully dropped in.

Proposed design methods:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages under static and quasi-static loads are designed in accordance with EN 1992-4.

MEA DROP-IN ANCHOR	Annex B1
Intended use – Specification	of European Technical Assessment ETA-18/0236

Table B1. Installation parameters

Installation parameters				M6	M8	M10	M12	M16
Nom. drill hole diameter		[mm]	=	8	10	12	16	20
Max. Cutting diameter of drill bit	Ø d _{cut}	[mm]	<	8,45	10,45	12,45	16,45	20,50
Depth of drill hole	h_1	[mm]	/	25	30	40	50	65
Effective anchorage depth	hef	[mm]	>	25	30	40	50	65
Installation moment	T_{inst}	[Nm]	=	4	8	15	35	60

Installation parameters	M8x40	M10x30			
Nom. drill hole diameter	Ø d ₀	[mm]	=	10	12
Max. Cutting diameter of drill bit	Ø d _{cut}	[mm]	<u> </u>	10,45	12,45
Depth of drill hole	h_1	[mm]	2	40	30
Effective anchorage depth	$h_{\rm ef}$	[mm]	2	40	30
Installation moment	Tinst	[Nm]	=	15	15

		M6	M8	M10	M12	M16
Minimum thickness of member	h_{min} [mm] =	100	100	120	140	160
Minimum edge distance	$c_{min} [mm] =$	90	120	140	175	120
Minimum spacing	$s_{min} [mm] =$	120	90	120	150	200

		M8x40	M10x30
Minimum thickness of member	h_{min} [mm] =	100	100
Minimum edge distance	$c_{min} [mm] =$	80	90
Minimum spacing	s_{min} [mm] =	120	150

MEA DROP-IN ANCHOR	Annex B2
Intended use – installation parameters	of European Technical Assessment ETA-18/0236

e C1: Design method A, characteristic ter	nsion load	values					
			M6	M8	M10	M12	\mathbf{N}
Steel failure			1				
Resistance to steel failure	$N_{Rk,s}$	[kN]	9,92	14,13	15,24	30,92	49
Partial safety factor under tension load	γ_{Ms}	[-]	1.40	1.40	1.40	1.40	1
Pull-out failure							
Resistance to pull-out failure in non-cracked concrete C20/25	N _{Rk,ucr}	[kN]	5.0	3.5	7.0	10.0	1
Increase factors for cracked and non-cracked concrete	Ψ_{c}		1,55	1,53	1,55	1,55	1
Concrete cone failure			'			•	
Partial safety factor in cracked concrete	k _{cr,N}	[-]			7.7		
Partial safety factor in non-cracked concrete	$\mathbf{k}_{\mathrm{ucr},N}$	[-]			11.0		
Effective embedment depth	$\mathbf{h}_{\mathbf{ef}}$	[mm]	25	30	40	50	(
Edge distance	$c_{cr,N}$	[mm]			1.5xhef		
Spacing	S _{cr,N}	[mm]			3xhef		
Partial safety factor	$\gamma_{Mp} = \gamma_{Mc}$	[-]	1.8	1.5	1.8	1.8	1
Robustness							
Installation safety factor	γ_{inst}	[-]	1.2	1.0	1.2	1.2	1
Minimum edge distance and spacing							
Minimum edge distance	Cmin	[mm]	90	120	140	175	1
Minimum spacing distance	Smin	[mm]	120	90	120	150	2
Min. thickness of the concrete member	h _{min}	[mm]	100	100	120	140	1
Edge distance to prevent splitting under load							
	$N^0_{Rk,sp}$	[kN]	4.5	3.0	6.5	9.5	1
Appropriate edge distance	$c_{cr,sp}$	[mm]	90	120	140	175	1
Displacements under static and quasi-static loading							
Short time tension displacement	$\delta_{ m N0}$	[mm]	0.09	0.07	0.17	0.16	0
•	_						

MEA DROP-IN ANCHOR	Annex C1 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-18/0236

 $\delta_{N\infty}$

[mm]

Long-time tension displacement

0.18

Table C1A: Design method A, characteristic tension load values

			M8x40	M10x30
Steel failure				
Resistance to steel failure	$N_{Rk,s}$	[kN]	14,13	15,24
Partial safety factor under tension load	γ_{Ms}	[-]	1.40	1.40
Pull-out failure				
Resistance to pull-out failure in non-cracked concrete C20/25	$N_{Rk,ucr}$	[kN]	6.0	5.5
Increase factors for cracked and non-cracked concrete	Ψс		1.41	1.00
Concrete cone failure				
Partial safety factor in non-cracked concrete	$\mathbf{k}_{ucr,N}$	[-]	11	.0
Effective embedment depth	$\mathbf{h}_{\mathbf{ef}}$	[mm]	40	30
Edge distance	$c_{cr,N}$	[mm]	1.5x	hef
Spacing	Scr,N	[mm]	3xl	nef
Partial safety factor	γ _{Mp} = γ _{Mc}	[-]	1.5	2.1
Robustness				
Installation safety factor	γinst	[-]	1.0	1.4
Minimum edge distance and spacing				
Minimum edge distance	c_{min}	[mm]	80	90
Minimum spacing distance	Smin	[mm]	120	150
Min. thickness of the concrete member	\mathbf{h}_{\min}	[mm]	100	100
Edge distance to prevent splitting under load				
	${ m N^0_{Rk,sp}}$	[kN]	6.0	5.5
Appropriate edge distance	$\mathbf{c}_{\mathrm{cr,sp}}$	[mm]	80	90
Displacements under static and quasi-static loading				
Short time tension displacement	δ_{N0}	[mm]	0.04	0.04
Long-time tension displacement	$\delta_{N^{\infty}}$	[mm]	0.07	0.07

MEA DROP-IN ANCHOR	Annex C2 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-18/0236

Table C2: Design method A, Characteristic shear load values

			M6	M8	M10	M12	M16
Resistance to steel failure under she	ear load						
Resistance to shear load without lever arm	${ m V^0}_{ m Rk,s}$	[kN]	2.5	5.5	7.0	7.5	18.0
Resistance to shear load with lever arm	$\mathbf{M}^0_{\mathrm{Rk,s}}$	[Nm]	18.0	34.0	46.0	110.0	240.0
Factor for group fasteners	\mathbf{k}_7	[-]	1.0	1.0	1.0	1.0	1.0
Resistance to pry-out failure							
Factor for pry-out failure	$\mathbf{k_8}$	[-]	1.0	1.0	1.0	1.0	2.0
Resistance to concrete edge failure							
Outside diameter of the fastener relevant for shear loading	$\mathbf{d}_{\mathbf{nom}}$	[mm]	8	10	12	15	20
Effective length of the fastener for transfer of shear load	$\mathbf{l_f}$	[mm]	25	30	40	50	65
Displacements under static and qua	asi-static						
loading							
Short time shear displacement	δ_{V0}	[mm]	0.51	0.71	0.64	0.23	0.57
Long-time shear displacement	$\delta_{V\infty}$	[mm]	0.77	1.07	0.96	0.35	0.86

			M8x40	M10x30
Resistance to steel failure under shear load				
Resistance to shear load without lever arm	$V^0_{Rk,s}$	[kN]	5.5	6.5
Resistance to shear load with lever arm	${ m M^0}_{ m Rk,s}$	[Nm]	34.72	46.45
Factor for group fasteners	\mathbf{k}_7	[-]	1.0	1.0
Resistance to pry-out failure				
Factor for pry-out failure	$\mathbf{k_8}$	[-]	1.0	1.0
Resistance to concrete edge failure				
Outside diameter of the fastener relevant for shear	$\mathbf{d}_{\mathrm{nom}}$	[mm]		
loading	C HOIII	[11111]		
Effective length of the fastener for transfer of shear	$\mathbf{l_f}$	[mm]	40	30
load	П	[IIIII]	40	30
Displacements under static and quasi-static loading				
Short time shear displacement	$\delta_{\mathrm{V}0}$	[mm]	0.80	1.37
Long-time shear displacement	$\delta_{V\infty}$	[mm]	1.20	2.06

MEA DROP-IN ANCHOR	Annex C3 of European
Performance for static and quasi-static loads: Resistances and Displacements	Technical Assessment ETA-18/0236

		Charact	eristic values	Characteristic values for tension load under fire exposure in accordance to EOTA TR020	oad under fir	e exposure i	n accordance	e to EOTA TR	1020		
Steel failure				M6x25	08×8M	M8×40	M10x25	M10x30	M10×40	M12x50	M16×65
	R30			0,21	0,27	0,27	0,50	0,50	0,50	1,24	2,14
Characteristic	R60	Z	K	0,19	0,25	0,25	0,43	0,43	0,43	0,93	1,60
resistance	R90	TK,s,T	<u>.</u>	0,15	0,19	0,19	0,33	0,33	0,33	0,81	1,39
	R120			0,11	0,14	0,14	0,27	0,27	0,27	0,62	1,07
Pullout failure											
Characteristic	R30										
resistance in	R60	N	Z	1,25	0,88	1,50	0,38	1,38	1,75	2,50	3,00
concrete ≥	R90			100	0 70	1 20	000	7	1 40	000	0.40
CZNZO	ואוא			0,1	0,,0	07,1	00,0	2,	04,	2,00	2,40
Concrete cone railure	allure										
Characteristic	R30			0.56	00 0	1 00	990	00 0	1 00	2 10	7
concrete >	R90	N°Rk,c,fi	[KN]	00,0	60,0	70,1	0,00	60,0	70,1	°,	<u>;</u>
C20/25	R120			0,45	0,71	1,46	0,45	0,71	1,46	2,55	4,91
		Spr.fi					4	4*h _{ef}			
Spacing		Smin	[E	100	06	120	110	150	160	200	260
		Const					2,	2*hof			
Edge distance		= 15	[mm]			<u></u>	ire attack fron	Fire attack from one side: 2*het	اور		
•		Cmin				Fire at	ttack from mo	Fire attack from more than 1 side: ≥ 300	> 300		
		Charac	teristic value	cteristic values for shear load under fire exposure in accordance to EOTA TR020	ad under fire	exposure in	accordance	to EOTA TRO	120		
Steel failure without lever arm	nout lever arm			M6x25	M8×30	M8×40	M10x25	M10x30	M10×40	M12x50	M16×65
	R30			0,21	0,27	0,27	0,50	0,50	0,50	1,24	2,14
Characteristic	R60	N	N N	0,19	0,25	0,25	0,43	0,43	0,43	0,93	1,60
resistance	R90	≺ RK,s,fi	<u> </u>	0,15	0,19	0,19	0,33	0,33	0,33	0,81	1,39
	R120			0,11	0,14	0,14	0,27	0,27	0,27	0,62	1,07
Steel failure with lever arm	lever arm										
	R30		•	0,40	29'0	0,67	1,53	1,53	1,53	4,59	10,49
Characteristic	R60	, M	[Mm]	96,0	09'0	09'0	1,32	1,32	1,32	3,44	7,87
resistance	R90	K,s,t		0,28	0,47	0,47	1,02	1,02	1,02	2,98	6,82
	R120			0,20	0,34	0,34	0,81	0,81	0,81	2,29	5,25
Pryout failure											
k-factor		k=k ₃	Ξ	1,00	1,00	1,00	1,00	1,00	1,00	1,00	2,00
Characteristic	R30										
resistance in	R60	V°Rkcofi	ΣN	95'0	68'0	1,82	0,56	0,89	1,82	3,18	12,26
concrete ≥	K90							i	,		
C20/25	R120			0,45	0,71	1,46	0,45	0,71	1,46	2,55	9,81
Concrete edge failure	ailure										
The initial value V ⁰ Rk,c,fi of the characteristic	V°RK,c,fi of the c		esistance in co	resistance in concrete C20/25 to C50/60 under fire exposure may be determined by: $V_{ m DR,c,f}=0,25 \times V_{ m DR,c,c}$ (< R90) $V_{ m DR,c,f}=0$	5 to C50/60 ui	nder fire expox	sure may be d	etermined by:	$V_{Rk,c,fi}^0 = 0.25$	× V°RK,c (≤ R90)) V ⁰ Rk,c,fi =
					0,20 × V ⁰ RK,c (≤ R120)	≤ R120)					

MEA DROP-IN ANCHOR	Annex C4
	of European
Performance for exposure to fire	Technical Assessment
	ETA-18/0236

HARMONIZED TECHNICAL SPECIFICATION: ETAG 001 PART 1 PARAGRAPH 5.2.1 ESSENTIAL CHARACTERISTICS PERFORMANCE	
Reaction to fire	In the final application, the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not contribute to fire growth or to the fully developed fire and they have no influence to the smoke hazard
	**

MEA DROP-IN ANCHOR	Annex C4 of European
Performance for exposure to fire	Technical Assessment ETA-18/0236