

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0296 of 10 May 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Mungo concrete screw MCS, MCSr, MCShr

Concrete screw of sizes 6, 8, 10, 12 and 14 mm for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 12

16 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchor for use in concrete", ETAG 001 Part 3: "Undercut anchors, April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 and European Assessment Document (EAD) 330011-00-0601.

European Technical Assessment ETA-16/0296 English translation prepared by DIBt

Page 2 of 16 | 10 May 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

8.06.01-105/16

European Technical Assessment ETA-16/0296 English translation prepared by DIBt

Page 3 of 16 | 10 May 2016

Specific Part

1 Technical description of the product

The Mungo concrete screw MCS is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel or stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Product performance for static and quasi static action	See Annex C 1 and C 2
Product performance for seismic category C1	See Annex C 4
Displacements under tension and shear loads	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 5

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, and European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z28103.16 8.06.01-105/16

European Technical Assessment ETA-16/0296 English translation prepared by DIBt

Page 4 of 16 | 10 May 2016

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

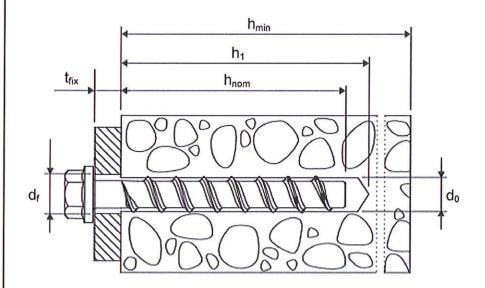
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 Mai 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt:

Tempel

product and installed condition


Mungo concrete screw MCS, MCSr and MCShr

carbon steel: MCS

stainless steel A4 and HCR MCSr and MCShr

 d_0 = nominal drill bit diameter h_{nom} = nominal anchorage depth h_1 = depth of the drill hole

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

Mungo concrete screw MCS, MCSr and MCShr

Product description

Installed condition

Annex A1

Table A1: materials and variants

part	name			Mate	erial					
1, 2,	Concrete	MCS		Steel EN 10263-4 galvanized acc. to EN ISO 4042 or zinc flake coating acc. to EN ISO 10683 (≥ 5µm)						
3,		MCSr		1.4401, 1.4404, 1		Control of the Contro	Toolo (= opin)			
4,		MCShr		1.4529						
5, 6, 7,							MCS MCSr MCShr			
8,		nominal characte	eristic stee	l yield strength	fyk	[N/mm²]	560			
9,		nominal characte	eristic stee	l ultimate strength	fuk	[N/mm²]	700			
10, 11		elongation at rup	ture		A ₅	[%]	≤ 8			
		•	1)	Anchor version version ve.g. MCS-A 8x10			hread and hexagon socket			
	-	0	2)	Anchor version version ve.g. MCS-A 8x10			hread and hexagon drive			
			3)	Anchor version v			agon head and TORX			
			4)	Anchor version ve.g. MCS-S 8x80			hexagon head			
}	ndinenasinas	2 3	5)	Anchor version version ve.g. MCS-S 8x80			agon head and			
		200	6)	Anchor version v			head			
			7)	Anchor version ve.g. MCS-P 8x8						
-		3, 5	8)	Anchor version			ead			
			9)	Anchor version e.g. MCS-ASK 6			k head and connection thread			
			10)	Anchor version			ve and connection thread			
			11)	Anchor version version ve.g. MCS-I 6x55			ad and hexagon drive			

Mungo co	oncrete screw	MCS,	MCSr	and	MCShr
----------	---------------	------	-------------	-----	--------------

Product descriptions

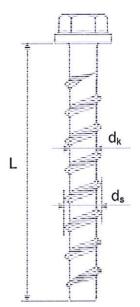
Materials und versions

Annex A 2

Table A2: dimensions and markings

Anchor size MCS, MCSr, MCShr			6		8			10			
	[man]	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth hno	_m [mm]	40	55	45	55	65	55	75	85		
Length of the anchor L ≤	[mm]										
Diameter of shaft d _k	[mm]	5,1			7,1		9,1				
Diameter of thread ds	[mm]	7,5			10,6			12,6			
Anchor size MCS, MCSr, MCShr			12				14				
		h _{nom1}	h _{nom2}	h _{nom}	3 I	1 _{nom1}	h _{nom}	2	n _{nom3}		
Nominal embedment depth hno	_m [mm]	65	85	100		75	100		115		
Length of the anchor L ≤	[mm]	500									
Diameter of shaft d _k	[mm]	11,1 13,1									
Diameter of thread ds	[mm]		14,6	16,6							

Marking: MCS


Anchor type: Anchor size: Length of the anchor:

TSM 10 100

15M 2 5

MCSr
Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: A4

MCShr
Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: HCR

Mundo	concrete	screw	MCS.	MCSr	and	MCShr

Product descriptions

Dimensions and markings

Annex A3

English translation prepared by DIBt

Intended use

Anchorages subject to:

- · static and quasi-static loads, all sizes and all embedment depth,
- used for anchorages with requirements related to resistance of fire, all sizes and all embedment depth,
- used for anchorages with seismic actions category C1, sizes 8-14 for maximum embedment depth hnoms.

Base materials:

- reinforced and unreinforced concrete according to EN 206-1:2000-12,
- strength classes C20/25 to C50/60 according to EN 206-1:2000-12,
- cracked and uncracked concrete.

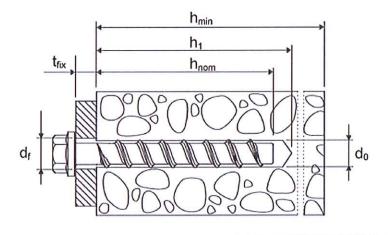
Use conditions (Environmental conditions):

- The anchor may only be used in dry internal conditions: All screw types,
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4,
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless
 steel with marking HCR.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work,
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.),
- Anchorages under static or quasi-static actions are designed for design Method A in accordance with:
 - ETAG 001, Annex C, Edition August 2010 or
 - CEN/TS 1992-4:2009.
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013.
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D (It must be ensured that local spalling of the concrete cover does not occur).
- In general, the conditions given in ETAG 001, Annex C, section 4.2.2.1 a) and section 4.2.2.2 b) are not fulfilled because the diameter of clearance hole in the fixture according to Annex B2, Table B1 is greater than values given in ETAG 001, Annex C, Table 4.1 for the corresponding diameter of the anchor.

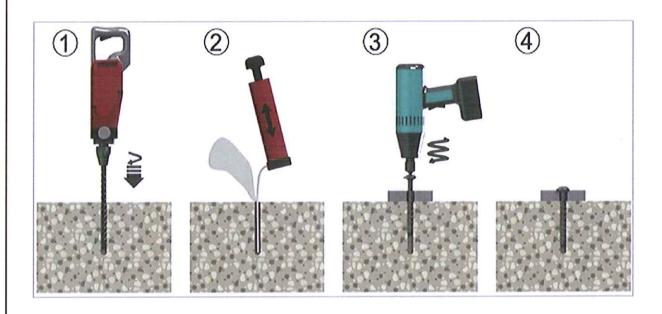
Installation:


- Hammer drilling only.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The drill hole may be filled with injection mortar Chemofast CF-T 300 V.
- Adjustability according to Annex B4: sizes 8-14, all anchorage depths.

Mungo concrete screw MCS, MCSr and MCShr Intended use Specifications Annex B 1

Table B1: Installation parameters

Anchor size MCS, MCSr, MCShr				6		8			10		
	Al- I-	funna)	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment dep	lominal embedment depth h _{nom} [mm]			55	45	55	65	55	75	85	
Nominal drill bit diameter	d ₀	[mm]	(3		8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40 8,4			8,45			10,45		
Depth of drill hole	h₁ ≥	[mm]	45 60 55 65		65	75	65	85	95		
Diameter of clearing hole in the fixture	d _f ≤	[mm]	8			12			14		
Installation torque	Tinst	[Nm]	10 2			20		40			
Anchor size MCS, MCSr, MCShr				12				14			
	41. 1.		h _{nom1}	h _{nom2}	h _{nom}	h _{nom1}		h _{nom}	2	h _{nom3}	
Nominal embedment dep	in n _{nom}	imm)	65	85	100		75	100		115	
Nominal drill bit diameter	d ₀	[mm]		12				14			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12,50				14,50			
Depth of drill hole	h₁ ≥	[mm]	75	95	110		85	110	8	125	
Diameter of clearing hole in the fixture	d _f ≤	[mm]						18			
Installation torque	Tinst	[Nm]		60				80			

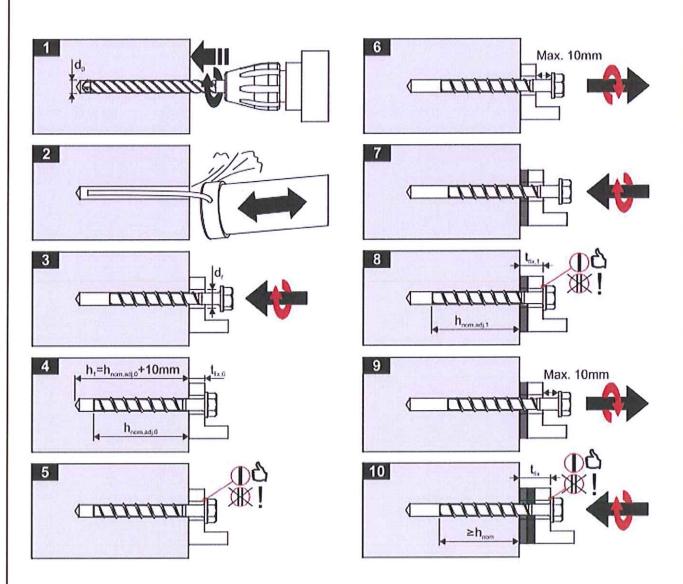

Mungo concrete screw MCS, MCSr and MCShr	
Intended use	Annex B 2
Installation parameters	

<u>Table B2: Minimum thickness of member, minimum edge distance and minimum spacing</u>

Anchor size MCS, MCSr, MCShr						8		10			
Nominal embedment depth h _{nom} [mm]		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
		40	55	45	55	65	55	75	85		
Minimum thickness of member	h _{min}	[mm]	10	100			120	100	130	130	
Minimum edge distance	C _{min}	[mm]	4	0	40	5	60	50			
Minimum spacing	Smin	[mm]	4	0	40	5	0	50			
Anchor size MCS, MCSr, MCShr				12				14			
			h _{nom1}	h _{nom2}	h _{nom}	3	h _{nom1}	h _{nom}	2	1 _{nom3}	
Nominal embedment de	ptn n _{nor}	_n [mmj	65	85	100		75	100		115	
Minimum thickness of member	h _{min}	[mm]	120	120 130			130 1		170		
Minimum edge distance c _{min} [mm]		50		70		50	70				
Minimum spacing	Smin	[mm]	50		70		50		70		

Installation instructions

Mungo concrete screw MCS, MCSr and MCShr


Intended use

Minimum thickness of member, minimum spacing, minimum edge distance and installation instructions

Annex B3

Installation instructions for adjustability

Installation instructions

The anchor may be adjusted maximum two times while the anchor may turn back at most 10 mm.

The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be equal or larger than h_{nom}.

Mungo concrete screw MCS, MCSr and MCShr Intended use Installation instruction for adjustability Annex B 4

<u>Table C1: Characteristic values for design method A according to ETAG 001, Annex C</u> or CEN/TS 1992-4 for MCS, MCSr and MCShr 6, 8 and 10

Anchor size MCS, MCSr,	MCShr			6			8		10		
Nominal embe	edment depth hno	[mm]		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	
Trommar cribs	sument depth 11/10	40 f		40	55	45	55	65	55	75	85
steel failure	for tension- and	shear I	oad								
		N _{Rk,s}	[kN]	14,	0		27,0			45,0	
characteristic	load	V _{Rk,s}	[kN]	7,0	0		17,0			34,0	
		k ₂ 1)	[-]	0,8	В		0,8			0,8	
		M ⁰ _{Rk,s}	[Nm]	10,	0		26,0			56,0	
pull-out failu		Hara Mark						The state of			
characteristic tension load in cracked concrete C20/25		$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	Pull-out is not de	
	tension load in ncrete C20/25	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	25,0
			C30/37	1,22							
increasing fac	or N _{Rk.p}		C40/50				1,41				
IOI IVRK,p			C50/60	1,55							
concrete cor	ne and splitting	failure									
effective anch	norage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68
factorfor	cracked	k _{cr} 1)	[-]	7,2							
factor for	uncracked	k _{ucr} 1)	[-]	10,1							
concrete	spacing	S _{cr,N}	[mm]				3 x h	ef			
cone failure	edge distance	C _{cr,N}	[mm]				1,5 x l	1 _{ef}			
splitting	spacing	Scr,Sp	[mm]	120	160	120	140	150	140	180	210
failure	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105
installation sa	fety factor	$\gamma_2^{(2)}$ $\gamma_{\text{inst}}^{(1)}$	[-]	1,0							
concrete pry	out failure (pry-	out)							sia. ya		
k-Factor $\frac{k^{2}}{k_3^{1}}$		k ²⁾	[-]	1,0					2,0		
concrete edg	ge failure										
effective leng	th of anchor	I _f = h _{ef}	[mm]	31	44	35	43	52	43	60	68
outside diame	eter of anchor	d _{nom}	[mm]	6			8			10	

¹⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

²⁾ Parameter relevant only for design according to ETAG 001, Annex C

Mungo concrete screw MCS, MCSr and MCShr	
Performances	Annex C1
Characteristic values for anchor size 6, 8 and 10	

<u>Table C2: Characteristic values for design method A according to ETAG 001, Annex C</u> <u>or CEN/TS 1992-4 for MCS, MCSr and MCShr 12 and 14</u>

Anchor size MCS, MCSr,	MCShr				12		14			
	edment depth h _{no}	[mm]		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
rrommar ombe	samont doptir mo	.m []		65	85	100	75	100	115	
steel failure	for tension- and	shear I	oad							
		N _{Rk,s}	[kN]		67,0			94,0		
characteristic	load	$V_{Rk,s}$	[kN]		40,0			56,0		
		k ₂ 1)	[-]	v I	0,8			0,8		
			[Nm]		113,0			185,0		
pull-out failu	re	M ⁰ _{Rk,s}								
characteristic tension load in cracked concrete C20/25		N _{Rk,p}	[kN]	12,0	Pull-out	NEW YORK TO SEE THE PERSON OF	Р	ull-out failure	W	
	tension load in ncrete C20/25	$N_{Rk,p}$	[kN]	16,0	is not decisive		is	is not decisive		
			C30/37			1,2	22			
ncreasing factor or N _{Rk,p}		Ψ_{c}	C40/50			1,4	11			
			C50/60	1,5			55			
concrete con	e and splitting	failure	Summer of							
effective anch	orage depth	h _{ef}	[mm]	50	67	80	58	79	92	
factor for	cracked	k _{cr} 1)	[-]	7,2						
ractor for	uncracked	k _{ucr} 1)	[-]			10,	,1			
concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]			1,5 x	h _{ef}			
splitting	spacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280	
failure	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140	
installation sa	fety factor	γ2 ²⁾	[-]	1,0						
		γ _{inst} 1)								
concrete pry	out failure (pry-	k ²⁾	stellasis'i							
I. Castan		k ₃ 1)	[-]	1,0 2,0		1,0 2,0				
concrete edg	je failure					dip to the late of				
effective lengt	th of anchor	I _f = h _{ef}	[mm]	50	67	80	58	79	92	
outside diame	eter of anchor	d _{nom}	[mm]		12			14	· · ·	

¹⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

²⁾ Parameter relevant only for design according to ETAG 001, Annex C

Mungo concrete screw MCS, MCSr and MCShr	
Performances	Annex C 2
Characteristic values for anchor size 12 and 14	

Table C3: Displacements under tension load for MCS, MCSr and MCShr

Anchor size MCS, MCSr, MCShr				6		8		10				
Nominal embedment depth h _{nom} [mm]			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
	tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Cracked		δ _{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
concrete	displacement	δ∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
Un cracked	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
	displacement	δ _{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
concrete		δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
Anchor :	size CSr, MCShr				12		14					
		adh h	Imama]	h _{nom1}	h _{nom2}	h _{nom}	3 1	n _{nom1}	h _{nom2}		h _{nom3}	
Nominai	embedment de	ptii ii _{no}	w fritting	65	85	100		75			115	
	tension load	N	[kN]	5,7	9,4	12,3	7,6		12,0		15,1	
Cracked concrete		δ_{N0}	[mm]	0,9	0,5	1,0		0,5 0,8			0,7	
CONTOICE	displacement	δ∞	[mm]	1,0	1,2	1,2		0,9	1,2		1,0	
Un-	tension load	N	[kN]	7,6	13,2	17,2		10,6			21,2	
cracked	diaminanas - t	δ_{N0}	[mm]	1,0	1,1	1,2	0,9		1,2		0,8	
concrete	displacement	δ _{N∞}	[mm]	1,0	1,2	1,2		0,9	1,2		1,0	

Table C4: Displacements under shear load for MCS, MCSr and MCShr

Anchor size MCS, MCSr, MCShr				6		8		10			
Nominal embedment depth h _{nom} [mm]			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
			40	55	45	55	65	55	75	85	
shear load	V	[kN]	3	,3		8,6		16,2			
III III	δ_{V0}	[mm]	1,	55		2,7		2,7			
displacement	δ√∞	[mm]	3,	10		4,1		4,3			
Anchor size MCS, MCSr, MCShr			12				14				
			h _{nom1}	h _{nom2}	h _{nom}	3	n _{nom1}	h _{nom}	2	h _{nom3}	
Nominal embedme	nt depth n _{noi}	ո [ատյ	65	85	100	SERVICE STATES OF THE PARTY OF	75	100		115	
shear load	٧	[kN]		20,0				30,5			
V1	δ_{V0}	[mm]		4,0				3,1			
displacement	δ _{∨∞}	[mm]		6,0				4,7			

Mungo concrete screw MCS, MCSr and MCShr	
Performances	Annex C3
Displacements under tension and shear loads	

Table C5: Characteristic values for seismic category C1 for MCS, MCSr and MCShr

Anchor size MCS, MCSr,	MCShr			8	10	12	14					
Naminal amba	Nominal embedment depth h _{nom} [mm]				h _{nom3}							
Nominal embe	dinent depth finor	n [mmm]		65	85	100	115					
steel fallure	for tension- and	shear load	d l									
ah aya ataylatla	land	N _{Rk,s,seis}	[kN]	27,0	45,0	67,0	94,0					
characteristic	load	V _{Rk,s, seis}	[kN]	8,5	15,3	21,0	22,4					
pull-out failu	re											
characteristic cracked conc	tension load in rete C20/25	N _{Rk,p,seis}	[kN]	12,0	Pull-out failure is not decisive							
concrete cor	e failure											
effective anch	orage depth	h _{ef}	[mm]	52	92							
concrete	spacing	S _{cr,N}	[mm]	3 x h _{ef}								
cone failure	edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}								
installation sa	fety factor	γ ₂	[-]	1,0								
concrete pry	out failure (pry-	out)										
k-Factor		1,0										
concrete edg	e failure											
effective lengt	h of anchor	I _f = h _{ef}	[mm]	52	68	80	92					
outside diame	ter of anchor	d _{nom}	[mm]	8	10	12	14					

Mungo concrete screw MCS, MCSr and MCShr	
Performances	Annex C 4
Characteristic values for seismic category C1	

Table C6: Characteristic values of resistance to fire exposure for MCS, MCSr and MCShr

Anchor size MCS, MCSr,	MCShr			(6 8				10			12			14		
haan			1	2	1	2	3	1	2	3	1	2	3	1	2	3	
Nominal embedment depth [mi					55	45	55	65	55	75	85	65	85	100	75	100	11
steel fallure fo	r tension- and	d shear load	I (F _{Rk,s,fi}	= N _R	k,s,fi =	V _{Rk,s}	11)						TOTAL SE				v. 11
Fire resistance class																	
R30		F _{Rk,s,fi30}	[kN] 0,9 2,4					4,4			7,3			10,3			
R60		F _{Rk,s,fi60}	[kN]	0	0,8 1,7		3,3		5,8		8,2						
R90		F _{Rk,s,fi90}	[kN]	0	0,6 1,1			2,3		4,2		5,9					
R120	Characteristic	F _{Rk,s,fi120}	[kN]	0	0,4 0,7		1,7		3,4		4,8						
R30	Resistance	M ⁰ Rks,,fi30	[Nm]	0	,7		2,4		5,9		12,3)	20,4			
R60		M ⁰ Rk,s,fi60	[Nm]	0,	,6		1,8		4,5		9,7			15,9			
R90		M ⁰ _{Rk,s,fi90}	[Nm]	0,	,5		1,2		3,0		7,0			11,6			
R120		M ⁰ Rks,,fi120	[Nm]	n] 0,3		0,9		2,3		5,7		9,4					
edge distance				Q Or			ng Pa		UP AL	Cally							
R30 bis R120		C _{cr, fi}	C _{cr, fi} [mm]					2 x h _{ef}									
spacing													Nineran Markan	1 TE		E L	
R30 bis R120		[mm]	4 x h _{ef}													

The characteristic resistance to fire exposure for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure shall be calculated according to TR 020 or CEN/TS 1992-4. If no value for $N_{Rk,p}$ is given, in the equation 2.4 and 2.5, TR 020 or in equation D.1 and D.2, CEN/TS 1992-4 the value of $N_{Rk,p}^0$ shall be inserted instead of $N_{Rk,p}$.

Mungo concrete screw MCS, MCSr and MCShr	
Performances	Annex C 5
Characteristic values of resistance to fire exposure	