

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0070 of 11 April 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

mungo Throughbolt m2, m2-C, m2-CG

Torque-controlled expansion anchor for use in non-cracked concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 Olten SCHWEIZ

Mungo Werk Olten

12 pages including 3 annexes

European Assessment Document EAD 330232-00-0601

European Technical Assessment ETA-05/0070

Page 2 of 12 | 11 April 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z79147.16 8.06.01-493/16

European Technical Assessment ETA-05/0070

Page 3 of 12 | 11 April 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The mungo m2 is an anchor made of galvanised steel which is placed into a drilled hole and anchored by torque-controlled expansion. According to the size of washer the anchor versions are designated as m2, m2-C and m2-CG.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading) and displacements	See Annex C 1 to C 2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330232-00-0601 according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z79147.16 8.06.01-493/16

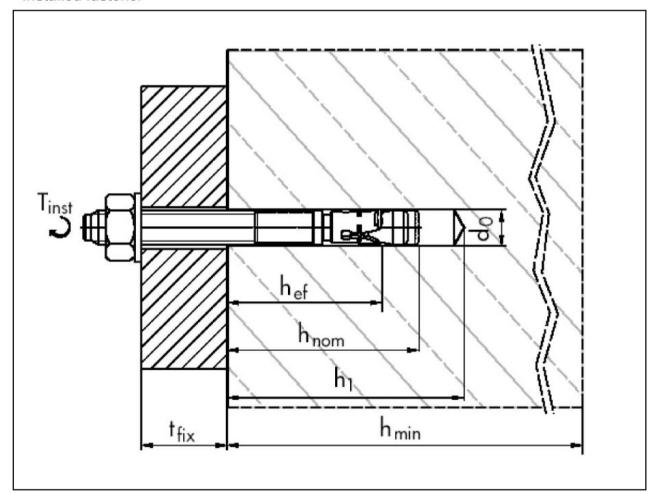
European Technical Assessment ETA-05/0070

Page 4 of 12 | 11 April 2017

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 11 April 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow beglaubigt:
p. p. Head of Department Lange

Z79147.16 8.06.01-493/16

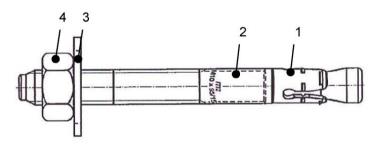
Installed fastener

Legend: h_{ef}

= effective anchorage depth= embedment depth= depth of drill hole h_{nom} h_1

= minimum thickness of concrete member h_{min}

 d_0 = nominal diameter of drill bit


 $\begin{matrix} t_{\text{fix}} \\ T_{\text{inst}} \end{matrix}$ = thickness of fixture = installation torque

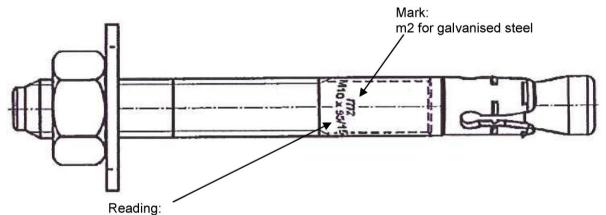
m2, m2-C, m2-CG	
Product description Installed condition	Annex A 1

Z17175.17 8.06.01-493/16

Fastener type

- 1 expansion element
- 2 bolt
- 3 washer
- 4 hexagonal nut

Shapes of clips:



m2 M6 m2 M16 Typ A m2 M20

m2 M8 m2 M10 m2 M12

m2 M16 Typ B

Nominal diameter (e.g. M10) x fastener length (e.g. 95) x max. member thickness (e.g.15)

Fastener types:

m2 bolt m2 with washer EN ISO 7089:2000 and hexagonal nut DIN 934:1987-10 m2-C bolt m2 with washer EN ISO 7093-1:2000 and hexagonal nut DIN 934:1987-10 m2-CG bolt m2 with washer EN ISO 7094:2000 and hexagonal nut DIN 934:1987-10

~~~	- T		-	•		_
mz.	1112-		ш	_		
m2,		∼,		_	_	•

#### **Product description**

Marking and denomination

Annex A 2



Table A1: Dimensions

Part		Designation				M6	M8	M10x60	M10	M12	M16	M20
		_	$d_{k}$		[mm]	6	8	10	10	12	16	20
			$d_{h}$		[mm]	4	5,6	7,2	7,2	8,5	11,5	15,2
			$d_{s1}$		[mm]	5,25	7,05	8,9	8,9	10,7	14,5	-
1	1 Bolt		$d_{s2}$		[mm]	-	1	-	ı	12	16	20
'			min I _c		[mm]	19	43	23	23	32	33	70
				${\sf max}\ {\sf I}_{\sf G}$		62	120	120	120	120	120	120
			min	L	[mm]	50	80	60	95	80	90	130
			max	L	[mm]	95	165	180	180	360	440	270
2	Expansion	type A			[mm]	9,5	13,2	15,2	15,2	17,5	19,3	21,6
	element	type B		S	[mm]	-	ı	ı	ı	-	19,7	-
		EN ISO 7089	3.3000	du	[mm]	12	16	20	20	24	30	37
		EN 130 708	3.2000	s	[mm]	1,6	1,6	2	2	2,5	3	3
3	Washer	EN ISO 7093-	1.2000	du	[mm]	18	24	30	30	37	50	60
3	vvasilei	EN 130 7093	-1.2000	s	[mm]	1,6	2	2,5	2,5	3	3	4
		EN ISO 700	1:2000	du	[mm]	22	28	34	34	44	56	72
	EN ISO 7094:2000		s	[mm]	2	3	3	3	4	5	6	
4	Hexagonal	nut		SW	[mm]	10	13	17	17	19	24	30

m2, m2-C, m2-CG

m2, m2-C, m2-CG L>185 mm (M12 to M20)

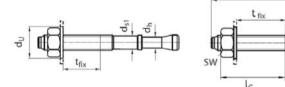



Table A2: Materials

Part	Des	ignation	Material
4	Bolt	L ≤ 185 mm	cold forged steel EN10263-2:2001, electroplated ≥ 5 μm
'	DOIL	L > 185 mm ¹⁾	free-cutting steel EN 10087:1998, electroplated ≥ 5 μm
2	Expansion	L ≤ 185 mm	cold rolled steel strip EN10139:1997, electroplated ≥ 5 µm
4	element	L > 185 mm ¹⁾	cold rolled stainless steel strip EN10088-2:2014, no coating
3	Washer		cold rolled steel strip EN10139:1997, electroplated ≥ 5 µm
4	Hexagonal	nut	steel, property class 8, DIN 934:1987-10, electroplated ≥ 5 µm

¹⁾ valid for sizes M12 and M16, valid for size M20 independent of length

### m2, m2-C, m2-CG

### Product description

Dimensions and materials

Annex A 3

Z17175.17 8.06.01-493/16



#### Specifications of intended use

#### Anchorages subject to:

Static and quasi-static loading

#### Base materials:

- Non-cracked concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

#### **Use conditions:**

 Structures subject to dry internal conditions (zinc coated steel)

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
- Anchorages under static or quasi-static actions are designed in accordance with EN 1992-4:2017.

#### Installation:

- · Hole drilling by hammer drilling only.
- Fastener installation in accordance with the manufacturer's specifications using the appropriate tools carried
  out by appropriately qualified personnel.
- · Cleaning the holes.
- The fastener may only be set once.

m2, m2-C, m2-CG	
Intended use Specifications	Annex B 1

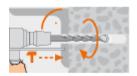
Z17175.17 8.06.01-493/16



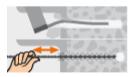
Table B1: Installation parameters

Fastener size			M6	M8	M10x60	M10	M12	M16	M20
Nominal drill hole diameter	do	[mm]	6	8	1	0	12	16	20
Effective embedment depth	$h_{ef}$	[mm]	40	50	33	58	68	80	100
Installation torque	$T_{inst}$	[Nm]	5	15	3	0	50	100	200
Cutting diameter at the upper tolerance limit (maximum diameter bit)	d _{cut,max}	[mm]	6,4	8,45	10	,45	12,5	16,5	20,55
Depth of drill hole	h₁	[mm]	60	70	50	80	90	110	130
Diameter of clearance hole in fixture	d _f	[mm]	7	9	1	2	14	18	22
Minimum fixture thickness	$\mathbf{t}_{fix,min}$	[mm]	1	1		1	1	1	1
Maximum fixture thickness	<b>t</b> _{fix,max}	[mm]	25	95	13	30	265	325	140

Table B2: Minimum thickness of concrete member, minimum spacing and edge distances


Size			M6	M8	M10x60	M10	Ç	<u> </u>	M16		M20
Fastener length	L	[mm]					≤ 185	> 185	≤ 185	> 185	
Minimum thickness of concrete member	h _{min}	[mm]	100	100	120	120	14	40	160		200
Minimum spacing	S _{min}	[mm]	40	45	50	50	75	110	100	120	200
for edge distance	С	[mm]	70	45	50	50	80	200	190	320	400
Minimum edge distance	C _{min}	[mm]	40	_	_	_	_	150	130	240	300
for spacing	s	[mm]	80					210	190	240	350

m2, m2-C, m2-CG	
Intended use Installation parameters	Annex B 2
Minimum thickness of concrete member, minimum spacing and edge distances	


Z17175.17 8.06.01-493/16



#### **Installation instructions**



Drilling the hole



Cleaning the hole



Fixing plug and building material



Tightening with torque wrench and predetermined value of  $T_{\mathsf{inst}}$ 



Tightened fixation

m2, m2-C, m2-CG

Intended use Installation instructions Annex B 3



Design method A, characteristic values under tension load Table C1:

Fastener size			M6	M8 ²⁾	M10x60 ³⁾	M10 ²⁾		M12 ²⁾	M16	M20
					Σ					
Fastener length	L	[mm]					≤ 185	> 185		
Installation safety factor	$\gamma_{inst}$	[-]			1,0				1,2	
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	10	19	33	33	43	43	77	124
Partial safety factor	γ _{Ms} 1)	[-]					1,4			
Pull-out failure										
Characteristic resistance	$N_{Rk,p}$	[kN]	7,5	12	n.d. ⁴⁾	16	24	24	30	50
		C30/37	1,1	7	1,22			1,17		
Increasing factor for N _{Rk,p}	$\Psi_{c}$	C40/50	1,3	2	1,41			1,32		
		C50/60	1,4	.2	1,55			1,42		
Concrete cone failure										
Effective embedment depth	h _{ef}	[mm]	40	50	33	58		68	80	100
Factor uncracked concrete	k ₁ =k _{ucr,N}	[-]					11,0			
Spacing	S _{cr,N}	[mm]	120	150	100	175	2	205	240	300
Edge distance	C _{cr,N}	[mm]	60	75	50	87	-	102	120	150
Concrete splitting failure										
Spacing	S _{cr,sp}	[mm]	200	250	165	290	3	340	400	500
Edge distance	C _{cr,sp}	[mm]	100	125	82,5	145	1	170	200	250

#### Table C2: Displacements under tension load

Fastener size			9М	М8	M10x60	M10	M12	M16	M20
Tension load	Ν	[kN]	3,6	5,7	4,6	7,6	9,9	11,9	19,8
Displacement $\frac{\delta_N}{\delta_N}$		[mm]	0,3 0,14 0,3				,3		
		[mm]				1,3			

m2, m2-C, m2-CG	
Performances Design method A, characteristic values under tension load Displacements under tension load	Annex C 1

Z17175.17 8.06.01-493/16

¹⁾ In absence of other national regulations.
2) Valid for clip in annex A2
3) Only for application with statically indeterminate structural components.
4) Pull-out failure not decisive.



Table C3: Design method A, characteristic values under shear load

Fastener size			M6	M8 ²⁾	M10x60 ^{2),3)}	M10 ²⁾	M 02)	Z	M16	M20
Fastener length	L	[mm]					≤ 185	> 185		
Steel failure without lever	arm									
Characteristic resistance	$V_{Rk,s}$	[kN]	4,5	11	18	18	24	28	33	51
Partial safety factor	$\gamma_{\sf Ms}^{-1)}$	[-]	1,5	1,29	1,27	1,27	1,25	1,33 1,5		5
Steel failure with lever arm										
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	12,0	27	56,8	56,8	91,6	104,7	249	486,2
Partial safety factor	$\gamma_{\sf Ms}^{-1)}$	[-]	1,5	1,29	1,27	1,27	1,25 1,33 1,5		5	
Concrete pryout failure										
Factor	$k_8$	[-]	1,0 2,0							
Concrete edge failure										
Effective fastener length under shear load	I _f	[mm]	40	50	33	58	6	8	80	100
external fastener diameter	$d_{nom}$	[mm]	6	8	10	10	1	2	16	20
1)										

Table C4: Displacements under shear load

Fastener size			M6	M8	M10x60	M10	M12	M16	M20
Shear load		[kN]	1,9	3,5	4,6	5,5	7,5	14	21,9
Displacement -	$\delta_{\text{VO}}$	[mm]	1,6	2,2	2,1	2,4	2,7	3,3	3,8
	$\delta_{V^\infty}$	[mm]	2,4	3,2	3,2	3,6	4,1	4,9	5,7

m2, m2-C, m2-CG	
Performances Design method A, characteristic values under shear load Displacements under shear load	Annex C 2

Z17175.17 8.06.01-493/16

¹⁾ In absence of other national regulations.
2) valid for clip in annex A2
3) Only for application with statically indeterminate structural components.